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ABSTRACT
Service-oriented applications are usually composed of ser-
vices from different organizations. To protect the business
interests of service providers, the implementation details of
services are usually invisible to service consumers. This
makes it challenging to white-box test service-oriented ap-
plications because of the difficulty to determine accurately
the test coverage of a service composition as a whole and
the difficulty to design test cases effectively. To address
this problem, we propose an approach to white-box test
service compositions based on events exposed by services.
By deriving event interfaces to explore test coverage infor-
mation from service implementations, our approach allows
service consumers to determine accurately test coverage dur-
ing testing based on events exposed by services at runtime.
We also develop an approach to design test cases effectively
based on services’ event interfaces. The experimental re-
sults show that our approach outperforms existing testing
approaches for service compositions with 35% more test cov-
erage rate, 19% more fault-detection rate and 80% fewer test
cases needed.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Measurement, Reliability, Verification

Keywords
Web service composition, white-box testing, event interface

1. INTRODUCTION
The service-oriented architecture (SOA) paradigm is a

widely adopted set of software engineering principles to help
manage the complexity of software development for distributed
enterprise applications [5, 11]. In this paradigm, service
providers develop reusable software components, publish them
as Web services, and register them in service registries. By
composing selected services from registries, service consumers
develop composite SOA applications across distributed, het-
erogeneous and autonomous organizations [15, 29].

To guarantee the quality of SOA applications, integration
testing of service compositions is required before the appli-
cations are released. Testing is a challenging task, espe-
cially, when an SOA application integrates third-party ser-
vices from different organizations. On the one hand, white-
box testing of a service composition requires implementation
details of every third-party service involved in the composi-
tion to be available [5, 17, 20]. However, for business reasons

or privacy concerns, service implementation details must of-
ten remain hidden from service consumers. On the other
hand, black-box testing [14, 22] requires no implementation
details of services to become visible but suffers from the lim-
itation that service consumers have little confidence on how
well a service composition has been covered in testing [31].

To address this dilemma, Bartolini et al. proposed an ap-
proach which requires a service provider to report coverage
information for its services to service consumers for testing
purposes, such as the percentage of code paths covered, in-
stead of revealing the services’ implementation [1]. Based
on the coverage information reported and the given cover-
age criteria, service consumers can estimate how well the
involved services have been tested.

However, we observe that it is still difficult to apply this
approach to a service composition involving more than one
third-party service. There are two reasons for this (1) the
inability to accurately determine test coverage as a whole
and (2) the difficulty of effectively designing test cases.

First, although a service consumer can obtain the coverage
percentage of every third-party service involved in a service
composition under test, the service consumer is still unable
to accurately determine how well the composition as a whole
has been tested.

For example, as illustrated in Fig. 1, a manufacturer com-
poses two third-party item supplier services to a manufac-
turer service. Each item supplier employs two different ways
to produce items. Let us consider the following scenario:
Suppose the first two test cases cover the two paths b1, b2,
b3, c1, c2, c3 and b1, b4, b5, c1, c4, c5, respectively. Accord-
ing to the solution proposed in [1], the manufacturer then
stops the testing and releases the service composition since
all the involved services in Fig. 1 report 100% path coverage.
However, the composition is not adequately tested because
two other scenarios (i.e., paths b1, b2, b3, c1, c4, c5 and b1,
b4, b5, c1, c2, c3) are not covered by this testing. More-
over, even with more test cases, the manufacturer still can-
not determine whether all the scenarios are covered because
all third-party services report 100% coverage. As a result,
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Figure 1: Coverage of a service composition.



faults in untested scenarios are left undetected (e.g., items
produced via path b1, b2, b3 may turn out to be inconsistent
with items produced via path c1, c4, c5).

Second, it is difficult for a service consumer to effectively
design test cases to cover a service composition because of
possible dependencies among services.

For example, suppose Service 2 in Fig. 1 executes the path
c1, c4, c5 if and only if Service 1 executes the path b1, b4, b5
in the composition. The test cases designed to cover path c1,
c4, c5 in Service 2 will not work if Service 1 executes the path
b1, b2, b3 under these test cases. A dependency relationship
such as this cannot be derived from the reported coverage
percentages of Service 1 and 2 (as neither service has the
required information). As a result, service consumers may
need to try a large number of test cases to cover all possible
scenarios, resulting in a significantly increased testing effort.

Therefore, reporting only the coverage percentage of each
third-party service for testing is not enough. This motivated
us to explore what other information services could reveal for
testing while keeping their implementation details invisible
from service consumers.

To address this concern, in this paper, we explore the
potential of allowing services to expose events to support
white-box testing of service compositions. In our approach,
instead of reporting the coverage percentage, each service
provider is required to provide service consumers with an
event interface derived from the service implementation at
design time. The event interface encapsulates and reveals
selected service internal state changes as events at runtime.

For example, Service 1 in Fig. 1 may declare an event
e1 to reveal the status change of task b2 (i.e., from “non-
committed” to “committed”) inside the service. Similarly,
another event e2 can be defined to reveal status changes of
b4. These events are correlated in the event interface to
represent different executions of the service (e.g., e1 and e2
represents two different paths of Service 1). During test-
ing, events exposed by third-party services are propagated
to service consumers, who can then make use of them to de-
termine test coverage of a service composition and effectively
derive test cases.

There are two main challenges with this approach: (1) how
to encapsulate and expose only the necessary events from
a large number of events generated by services at runtime
to hide the service implementation details; and (2) how to
correlate events from different services to reason about the
coverage of a service composition as a whole.

These challenges are addressed in this paper with a four-
fold contribution: First, we propose a novel approach to
white-box test Web service compositions involving more than
one third-party service via events exposed from services.
Next, we develop a model to derive event interfaces from
service implementations. We prove that the test coverage
derived based on event interfaces is equivalent to real cov-
erage of service compositions under test. This allows ser-
vice consumers to determine the test coverage of a service
composition without revealing the implementation of each
involved third-party service. Third, we propose algorithms
to effectively derive test cases based on event interfaces to
reduce the number of test cases needed. Finally, we per-
form a detailed experimental evaluation. The results show
that our approach achieves a 35% increase in test coverage
and detects 19% more faults than the approach proposed
by Bartolini et al. [1], and requires 80% fewer test cases on

average than the random testing approach [19].
The rest of this paper is organized as follows: Section 2

reviews related work on service testing. Section 3 introduces
our approach and methodology. Section 4 evaluates our ap-
proach empirically and Section 5 discusses some limitations.

2. RELATED WORK
In this section, we review related work in the areas of

service testing and service interfaces.
Service Testing. Service Testing has become an active

area of research in the software engineering community and
has attracted much attention in recent years [1, 5, 17, 20,
21]. Existing approaches can be classified into two main
categories based on the roles involved in testing services:
(1) from the perspective of service providers and (2) from
the perspective of service consumers.

From the perspective of service providers, services need to
be tested to conform to quality standards prior to release.
Service providers usually have all the implementation details
of their services (or partial details if third-party services are
integrated to implement their services). Therefore, service
providers can white-box test their services. For example, Li
et al. [16, 30] proposed a framework to organize unit tests
and generate test cases based on a search of BPEL flow
graphs and constraint solving techniques. Mei et al. [20, 21]
proposed a data flow approach to detect faults introduced
by XML and XPath based on XPath rewriting. These ap-
proaches however are inadequate to white-box test a service
composition involving third-party services because the im-
plementations of third-party services are usually hidden.

Service consumers, on the other hand, need to know whe-
ther the selected third-party services work correctly when
composed together to form new applications, even though
each service has been tested individually by each service
provider. Black-box testing approaches are often applied
due to unavailable implementations of third-party services.
Kaschner [14] proposed an automatic approach to design test
cases for black-box testing of services based on their busi-
ness protocols. Bartolini et al. [3] proposed a model-based
approach to generate testbeds to replace services for testing
from service consumers. Mei et al. [22] proposed an approach
to help service consumers prioritize test case selection for re-
gression testing based on the coverage of WSDL tags of the
tested service. These approaches can help service consumers
to detect faults in a service composition. The limitation is
that it is unclear to service consumers how adequately a
service composition as a whole has been tested.

To gain confidence about how well a service composition
has been tested, service consumers need to whiten SOA test-
ing for service compositions. Li et al. [17] suggested that
service providers design test cases based on their BPEL pro-
cesses and provide the test cases to service consumers. The
limitation is that service providers cannot anticipate all pos-
sible composition scenarios. Bartolini et al. [1] proposed to
instrument each service with an intermediate service which
provides coverage feedback for each third-party service to
service consumers during testing. However, the coverage
percentage provided by such an approach can not be used
to derive how adequately a whole service composition has
been tested. Moreover, this approach does not address how
to design test cases based on the feedback. We view this as
a non-trivial step. Our approach addresses these two issues
through the novel concept of event exposure from services



that we developed. By observing events and matching them
to feasible observations constructed from event interfaces,
service consumers can determine the test coverage of a ser-
vice composition as a whole. Test cases can also be designed
effectively based on event interfaces, as we demonstrate.

Testing Equivalence of Processes. Much research has
also been devoted to conformance testing of service specifi-
cations and their implementations. For example, Nicola et
al. [23] studied the equivalence relationship between pro-
cesses based on a set of tests. Bentakouk et al. [2] proposed
to test the conformance between service orchestration speci-
fications and their implementations with symbolic execution
techniques. Tretmans [26] defined a test equivalence rela-
tionship between asynchronous input/output automata and
the underlying synchronous labeled transition systems.

Our work also defines an equivalence relationship between
the event interface and the service implementation. The
difference is that existing work does conformance testing of
service specification and implementation, whereas our ap-
proach determines the test coverage for white-box testing.
Even though two processes are equivalent in terms of confor-
mance testing, the test cases designed based on one process
may not cover the same paths in the other process.

Service Interface. Often, the implementation details of
a service are invisible to service consumers except for ac-
cess to restricted service interfaces. Many researchers have
studied how to enrich service interfaces to facilitate a ser-
vice composition. Beyer et al. [4] proposed to specify con-
straints in Web service interfaces to define correctness re-
quirements of a service. Alfaro and Henzinger [8] proposed
to describe interfaces as automata to capture temporal as-
pects of constraints. Emmi et al. [9] proposed a modular
verification approach based on assume-guarantee rules to
check the compatibility of interface automata. Ye et al. [29]
proposed an atomicity-equivalent public view to check the
atomicity property of a service composition. Some industrial
standards like the SCA Event Interface [25] and the WS-
Eventing protocol [27] were proposed to expose and prop-
agate events among services. However, all aforementioned
approaches do not address how to use service interfaces to
white-box test a service composition. Our work contributes
a new kind of service interface, namely an event interface,
to test services and thus complements existing approaches.

3. METHODOLOGY

3.1 Overview
As discussed in Section 1, existing approaches to white-

box testing service compositions suffer from two limitations:
inability to accurately determine test coverage as a whole
and difficulty to effectively design test cases. In this section,
we illustrate our approach to address these issues based on
the exposure of events from services.

An event is defined as a state change [6, 18]. A state of a
service is defined as a snapshot of its execution at runtime.
The execution of a service can be seen as a series of tran-
sitions among its states. The transition from one state to
another is defined as a state change. For example, an online
shopping service transitions from the state “the customer
has not been verified” to “the customer has been verified”.
Usually, these states are invisible from outside the service,
and thus referred to as internal states. We define an event
to reveal a state change from within a service.
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Figure 2: Methodology overview

In this paper, we explore the use of event exposure from
services to support white-box testing of service composi-
tions. The basic idea is to abstract coverage-related in-
ternal state changes as events and expose them to service
consumers. For example, as illustrated in Fig. 2, suppose
Service 1 transitions from state s1 to state s2, then we de-
fine and expose the event e1 to represent that the path from
s1 to s2 has been covered. Similarly, another event e2 is de-
fined to represent the coverage of the path from s1 to s3. By
making use of coverage-related events, service consumers can
accurately determine the test coverage of a service compo-
sition as a whole. The conditions under which these events
occur can also be explored to help derive test cases more
effectively to cover a service composition under test.

Note that given various coverage criteria, we can define
different sets of events to represent the coverage scenario.
For example, for a data flow coverage criterion to cover all
define-use relations [31], we can define a pair of events (edef ,
euse) to track every define-use pair in the service. To ease the
presentation and without lose of generality, in the rest of this
paper, we use path coverage [31] to illustrate our approach.
Other coverage criteria can be handled in a similar way.

Fig. 2 summarizes our methodology. Each third-party ser-
vice provider defines coverage-related events in its service,
abstracts them and their relationships into an event inter-
face, and publishes the event interface to the service con-
sumer. By monitoring and correlating the exposed events
from third-party services during testing, the service con-
sumer can determine how well the service composition has
been tested. Additionally, the service consumer can use
event interfaces to derive test cases to cover untested paths.

3.2 Coverage-equivalent Event Interface
To make use of event exposure from services to support

white-box testing of service compositions, service providers
need to encapsulate events related to test coverage, derive
their relationships, and declare them in event interfaces. Be-
fore illustrating how to do so, let us first introduce some ba-
sic concepts. Similar to many existing work [4, 10, 11, 29],
we model a service as a finite state machine in this paper.
Each state is defined by a set of variables and their values.
In Section 5, we discuss how to derive the state machine of
a service from its implementation (e.g., BPEL).

Definition 1 (State): A state s is defined as a finite set
{(x1, t1, v1), · · · , (xn, tn, vn)}(n > 0), where xi is a variable,
ti and vi are its type and value, respectively1.

Definition 2 (Service): A service P is a 6 tuple (S, s0, G,
C ∪ I, T, F ), where S is a set of states, s0 ∈ S is the ini-
tial state, F ⊆ S is the set of final states, C is the set

1Note that the value of a variable can be a concrete value
or a constraint to define a set of values (e.g., vi ≡ xi > 0).



of communicating actions (e.g., sending or receiving a mes-
sage), I is the set of internal actions invisible to service con-
sumers, G is the set of guarded Boolean expressions, and
T ≡ S ×G× (C ∪ I)× S represents the set of transitions.

Given a state s in service P , P can transition from s to s′,

denoted as s
t−→ s′, if and only if ∃t ≡ (s, g, a, s′) ∈ T ∧s ` g.

An execution of P (also denoted as an instance of P ) is a

sequence of s0
ti1−−→ si1

ti2−−→ · · · tik−−→ sik, where sik is its cur-
rent state. The execution of a service is the transitioning of
the service from one state to another. Informally speaking,
these state changes represent that something happened and
are defined as events.

Definition 3 (Event): Let s ≡ {(x1, t1, v1), · · · , (xn, tn,
vn)} and s′ ≡ {(x′1, t′1, v′1), · · · , (x′n, t′n, v′n)} be two states of
service P . A state change from s to s′ is defined as an event
es→s′ ≡ {(xi1, ti1, vi1), · · · , (xik, tik, vik)} ⊆ s ∪ s′.

Note that an event is different from a transition, in the
sense that the former defines that something of interest hap-
pens (i.e., a state change related to a set of variables xi1, · · · ,
xik of interest), whereas the latter defines how something
happens (i.e., how a state change comes about). Since our
purpose is to determine the coverage of a service compo-
sition during testing without revealing the implementation
details, we only need to know the coverage changes dur-
ing testing. Therefore, we define two kinds of events in our
approach: coverage-related events and auxiliary events. The
former are defined and raised to reflect the coverage changes
for testing, whereas the latter are defined to correlate events
from different services involved in a service composition.

To define coverage-related events, we introduce an extra
variable xcoverage into a service to collect the coverage in-
formation of a service for testing. For the path coverage
criteria [31], this variable is assigned a different value (e.g.,
a unique branch ID) whenever a service enters a branch. For
example, in Fig. 2, if Service 1 transitions from s1 to s2 (or
s3), xcoverage can be assigned “Branch 1” (or “Branch 2”).
Formally, suppose service P transitions from s to s′, where
(s, g1, a, s

′) ∈ T , the value of xcoverage changes if and only
if ∃(s, g2, b, s′′) ∈ T : (s, g2, b, s

′′) 6= (s, g1, a, s
′). Whenever

the value of xcoverage changes, we raise an event to represent
such a change. For example, in Fig. 2, two events e1 and
e2 are defined to indicate that Service 1 enters two different
branches, respectively.

Besides coverage-related events, we also need to define
some auxiliary events to correlate events from different ser-
vices. An auxiliary event occurs when a service sends or re-
ceives a message: that is, if service P transitions from s to s′,
where (s, g, a, s′) ∈ T ∧a ∈ C, then an auxiliary event es→s′

is defined. If both an auxiliary event and a coverage-related
event are defined for a transition, then only the auxiliary
event is kept. We also define a start event for each service
to indicate that the service has started to execute.

In order to represent the actual coverage of paths inside
a service, what is still needed is a way to determine which
events are on the same path and which are not. For exam-
ple, as illustrated in Fig. 3(a), suppose service P transitions
from s0 to s4 via s2, event e0 will be raised first, followed
by events e1, e2. Therefore, we can correlate e0, e1 and e2
in a sequence e0e1e2 · · · to represent the path. On the other
hand, transitions t1 ≡ (s1, g1, a1, s2) and t8 ≡ (s0, g8, a8, s7)
never belong to the same path in any execution of P . There-
fore, e2 and e6 should not be correlated. The following defi-

Figure 3: (a) Event exposure. (b) Service composi-
tion.

nition summarizes the causality relationships among events:
Given two events es1→s2 and es3→s4 , es1→s2 is said to

cause es3→s4 , denoted as C (es1→s2 , es3→s4), if and only if

∃si1
t1−→ si2

t2−→ · · · tik−−→ sik ∧ si1 ≡ s2∧ sik ≡ s3. If no event

is raised during si1
t1−→ si2

t2−→ · · · tik−−→ sik, es1→s2 is called
the direct cause of es3→s4 , denoted as DC (es1→s2 , es3→s4).
In the above example in Fig. 3(a), e0, e1 and e2 cause e4 in
the path from s0 to s5 via s1, s2, s4. Event e2 is the direct
cause of e4 whereas e0 and e1 are not.

Based on the above discussion, we introduce the concept
of event interface to abstract both the exposed events and
their causality relationships inside a service.

Definition 4 (Event Interface): An event interface EI
is a tuple (E,R), where E is the set of exposed events, and
R ≡ E × E is the set of causality relationships between
events, that is, ∀(ei, ej) ∈ R: DC (ei, ej).

Since our purpose is to use event interfaces to determine
test coverage inside services, service providers need to offer
event interfaces for their services to service consumers before
testing. The following algorithm illustrates how to derive an
event interface from a service. As proven in Section 3.3, the
coverage derived based on event interfaces is equivalent to
the actual coverage of services in testing. Therefore, event
interfaces are called coverage-equivalent event interfaces.

Algorithm 1 has two parts. Part 1 (Lines 2 to 18) traverses
the service and generates the two types of events (Lines 6,
11); Part 2 (Lines 19 to 29) traverses the service in the
opposite direction to determine the direct causes for each
event. For example, as marked in Fig. 3(a), seven events
{e0, e1, e2, e3, e4, e5, e6} are defined and exposed from Ser-
vice P . For each event, the algorithm traces back from
the state the event is raised to determine all potential di-
rect causes. For instance, for event e4, the algorithm traces
back from state s4 to s2 and s3, and gets its two possi-
ble direct causes e2 and e3. The causality relationship for
other events can be calculated in a similar way. Therefore,
the event interface for service P is EI ≡ (E,R), where
E ≡ {e0, e1, e2, e3, e4, e5, e6}, R ≡ {(e0, e1), (e0, e6), (e1, e2),
(e1, e3), (e2, e4), (e2, e5), (e3, e4), (e3, e5), (e5, e1)}. Suppose
a service has k transitions, and exposes m events. Part 1
(Lines 2 to 18) traverses at most k steps; Part 2 (Lines 19
to 29) traverses at most m × k steps. Since m ≤ k, the
complexity of Algorithm 1 in the worst case is O(k2).

3.3 Coverage Reasoning
Based on the event interfaces provided by service providers,

service consumers can monitor the exposed events at run-
time to determine test coverage. As mentioned in Section 1,
the execution of a path in one service may depend on some



Algorithm 1 Derive a coverage-equivalent event interface.

Input:
A service P ≡ (S, s0, G,C ∪ I, T, F );

Output:
A coverage-equivalent event interface EI ≡ (E,R);

1: qsearch ← {s0}, E ← e0, generated(s0)← e0;
2: while ∃cs ∈ qsearch do
3: qsearch ← qsearch − {cs};
4: for ∀t ≡ (cs, g, a, s) ∈ T do
5: if a ∈ C then
6: define an auxiliary event ea;
7: E ← E ∪ {ea}, cause(ea)← cs;
8: generated(s)← generated(s) ∪ {ea};
9: else

10: if ∃t′ ≡ (cs, g′, a′, s′) ∈ T : t 6= t′ then
11: define a coverage-related event ec;
12: E ← E ∪ {ec}, cause(ec)← cs;
13: generated(s)← generated(s) ∪ {ec};
14: else
15: shared(s)← shared(s) ∪ {cs};
16: if visitedr1(s) = false then
17: qsearch ← qsearch ∪ s;
18: visitedr1(s)← true;
19: for ∀e ∈ E do
20: s← cause(e);
21: if visitedr2(s) = false then
22: visitedr2(s)← true, qsearch ← {s};
23: while ∃cs ∈ qsearch do
24: qsearch ← qsearch − {cs};
25: cause set(s)← cause set(s) ∪ generated(s) ;
26: for ∀ns ∈ shared(cs) : visitedr2(ns) = false do
27: qsearch ← qsearch ∪ {ns};
28: for ∀e′ ∈ cause set(s) do
29: R← R ∪ {(e′, e)}

particular paths in another service. Suppose n services are
involved in a service composition (denoted as P ), and each
one has mi paths, then P may have a total of

∏n
i=1 mi pos-

sible combinations of execution paths. To accurately deter-
mine test coverage of P as a whole, service consumers need
to know which combinations of execution paths are feasible.
Definition 5 specifies feasible paths in a service composition.

Definition 5 (Service Composition): Given n services
Pi ≡ (Si, si,0, Gi, Ci∪ Ii, Ti, Fi)(i = 1..n), their composition
is denoted as a service P ≡ ⊕(P1, P2, · · · , Pn). A state
of P can be represented as ((s1,j1 , w1), · · · , (sn,jn , wn)),
where si,ji ∈ Si, and wi is a sequence of executed actions
in Ci ∪ Ii representing a path. The transition ((s1,j1 , w1),
· · · , (sn,jn , wn)) → ((s′1,j1 , w

′
1), · · · , (s′n,jn , w

′
n)) is allowed

if and only if any of the following conditions are satisfied:

1. ∃ti ≡ (si,ji , gi, ai, s
′
i,ji) : si,ji

ti−→ s′i,ji ∧ ai ∈ Ii ∧
w′i = wiai ∧ (∀l 6= i : s′l,jl = sl,jl ∧ w′l = wl).

2. ∃ti ≡ (si,ji , gi, ai, s
′
i,ji) :(si,ji

ti−→ s′i,ji ∧ ai ∈ Ci ∧
w′i = wiai ∧ ∃tk ≡ (sk,jk , gk, ak, s

′
k,jk

) : (sk,jk
tk−→ s′k,jk

∧ ak ∈ Ck ∧ w′k = wkak ∧ (ai sending a message and ak

receiving the message) ∧ (∀l 6= i, k : s′l,jl = sl,jl∧w
′
l = wl))).

Intuitively, Definition 5 specifies how a service composi-
tion transitions from one state to another. In particular,
Condition 1 represents a transition by executing an internal
action (that is, from Ii) of an involved service Pi; Condi-
tion 2 represents a transition that two involved services Pi

and Pk communicate with each other via ai and ak
2. A state

((s1,j1 , w1), · · · , (sn,jn , wn)) is feasible if and only if there
exists a sequence of transitions ((s1,0, {}), · · · , (sn,0, {}))→
· · · → ((s1,j1 , w1), · · · , (sn,jn , wn)).

Let us take the service composition in Fig. 3(b) as an
example. Actions in transitions t13 and t14 of service P1

send two messages to P2 (represented as the dashed curve).
These two messages are received by t21 and t22 of P2, re-
spectively. The initial state of the service composition is
((s10, {}), (s20, {})). If P1 transitions to s14, P2 will transi-
tion to s22. Therefore, the state ((s14, a10a11a13), (s22, a20

a21)) is feasible, where ai represents the action in transition
ti. Similarly, ((s15, a10a12a14), (s23, a20a22)) is also feasi-
ble whereas ((s14, a10a11a13), (s23, a20a22)) is not, because
when P1 transitions to s14, P2 cannot transition to s23.

A feasible state of a service composition represents a feasi-
ble execution path of the service composition. To accurately
determine test coverage of a service composition as a whole,
service consumers need to correlate events in event inter-
faces from different services and organize them in a way to
enumerate every feasible execution path of the service com-
position. On the other hand, every feasible execution path of
the service composition should have only one such combina-
tion of events. Definition 6 specifies the pattern to organize
and correlate events to represent a feasible execution path
of a service composition. To ease the presentation, we in-
troduce the following notation: Given a sequence of events
h ≡ e0e1 · · · en, tail(h) ≡ en and he ≡ e0e1 · · · ene; given
an event e, predicates aus(e), aur(e), cv(e) denote that e is
an auxiliary event representing the sending of a message, an
auxiliary event representing the receiving of a message, and
a coverage-related event, respectively; com(ei, ej) = true if
and only if ei is the event representing that a message is
sent by a service and ej is the event representing that this
message is received by another service.

Definition 6 (Observation): Let P be a service com-
position of n services Pi(i = 1..n), and EIi ≡ (Ei, Ri) be
their coverage-equivalent event interfaces. An observation
of events from this service composition can be represented
as (h1, h2, · · · , hn), where hi is a sequence of events ob-
served from service Pi. The observation (h1, h2, · · · , hn) can
be followed by (h′1, h

′
2, · · · , h′n), denoted as (h1, h2, · · · , hn)

⇒ (h′1, h
′
2, · · · , h′n), if and only if ∃ej ∈ Ei : h′i = hiej ∧

(tail(hi), ej) ∈ Ri ∧ (∀l 6= i : h′l = hl) ∧ (aus(ej) ∨ cv(ej)
∨ (∃k 6= i : com(tail(hk), ej)).

The intuitive meaning of Definition 6 is that a service
consumer can observe a new event from a service if and only
if its direct cause is observed as the latest event from the
service. Moreover, if the event indicates that a message is
received, then the event indicating that the same message is
sent by a service should be the latest observed event from
the service3. An observation (h1, h2, · · · , hn) is feasible if
and only if there exists a sequence (e1,0, e2,0, · · · , en,0) ⇒
· · · ⇒ (h1, h2, · · · , hn), where ei,0 is the start event of Pi.
For example, as illustrated in Fig. 3(b), (e10e11e13, e20e21)
is a feasible observation whereas (e10e11e13, e20e22) is not.
Based on the above concepts, we have the following theorem:

2We assume synchronous communication between services.
We discuss how to handle asynchronous communication in
Section 5.
3Events may lose order in a distributed setting. Service con-
sumers can solve this issue by caching events into queues be-
fore matching them to the observed pattern of Definition 6.



Theorem 1. Let P be a service composition of n services
Pi(i = 1..n), and EIi ≡ (Ei, Ri) be their coverage-equivalent
event interfaces. For every feasible execution ((s1,j1 , w1),
· · · , (sn,jn , wn)) of P , there exists a feasible observation (h1,
h2, · · · , hn) of events from P , and vice versa, where hi is
the sequence of events generated by Pi in the execution.

The intuitive meaning of Theorem 1 is that every feasi-
ble observation of events corresponds to a feasible execution
path of a service composition, and vice versa. The proof of
Theorem 1 is to construct a one-to-one mapping between a
feasible execution path of a service composition and a fea-
sible observation of events. The proof can be found in the
appendix.

With this theorem, service consumers only need to con-
struct all the feasible observations based on the event in-
terfaces from service providers, and determine the test cov-
erage by counting how many of them have been observed
during testing. Note that when there are loops in a service
composition, the number of feasible execution paths may be
infinite. In practice, some constraints are usually added to
the path coverage criterion to terminate searching (e.g., the
length of each path is less than a given K [31], and this in-
formation can be added into events). On the other hand,
verifying a path is executable or not is generally undecid-
able. As a result, white-box testing techniques usually count
how many of the potentially executable paths (whose exe-
cutable conditions may be satisfied) have been covered [31].
Consequently, the following algorithm constructs all the cor-
responding potentially feasible observations.

Algorithm 2 Construct all feasible observations.

Input:
n event interfaces EIi ≡ (Ei, Ri) of n services involved
in a service composition;

Output:
A set of potential feasible observations O ≡ {(h1,1, h2,1,
· · · , hn,1), · · · , (h1,m, h2,m, · · · , hn,m)};

1: qsearch ← {(e1,0, e2,0, · · · , en,0)}, O ← {};
2: while ∃co ∈ qsearch do
3: qsearch ← qsearch − co(≡ (h1, h2, · · · , hn));
4: visited(co)← true;
5: if satisfied(co) then
6: O ← O ∪ {co};
7: else
8: for ∀i(i = 1..n) do
9: for ∀e ∈ Ei : tail(hi, e) ∈ Ri do

10: if cv(e)∨ aus(e)∨(∃j : com(tail(hj), e)) then
11: co′ = (h1, · · · , hie, · · · , hn);
12: if visited(co′) = false then
13: qsearch ← qsearch ∪ {co′};

Algorithm 2 constructs all potentially feasible observa-
tions from scratch. In the beginning, only the start events
of each involved service are put into an initial observation.
Then, the algorithm constructs all the potentially feasible
observations following the initial observation by adding an
event to the observation that may satisfy the condition in
Definition 6. If a new potentially feasible follow-up observa-
tion satisfies the requirement (Line 5, e.g., the length of the
path is larger than a given K), the observation is put into
the output set O. This procedure is executed until no more
potentially feasible observations are found (Line 2). Sup-
pose a service composition has m feasible execution paths,

Algorithm 2 executes at most m ×K steps. Therefore, the
complexity of this algorithm is O(m×K).

3.4 Test Case Generation
As mentioned in Section 3.3, service consumers can con-

struct all the potentially feasible observations based on the
coverage-equivalent event interfaces from service providers.
During testing, service consumers generate test cases to test
service compositions and subscribe to the exposed events
from involved services. By counting the number of poten-
tially feasible observations that have been matched from ex-
posed events, a service consumer can determine how well a
service composition has been tested.

One important issue remained is how to design test cases
to cover the potentially feasible observations. Service con-
sumers can apply existing approaches (e.g., random test-
ing [19]) to generate test cases. However, as mentioned in
Section 1, the execution of a path in one service may depend
on the execution state of some particular paths in another
service. A dependency such as this increases the difficulty to
generate test cases effectively to cover a service composition
adequately. In this section, we illustrate that the depen-
dency information can be explored and attached to event
interfaces. The purpose is to allow service consumers to
use the additionally exposed information to generate test
cases effectively to cover potentially feasible observations.
Note that the test oracle issue is out of the scope of this pa-
per. The approach introduced in this section can be seen as
a complementary approach to existing test case generation
approaches for service testing.

One natural solution to the aforementioned issue is to add
more information related to exposed events to provide more
insights about the internal execution of a service. In partic-
ular, we can analyze the service to determine the conditions
under which an event can be raised in a given potentially
feasible observation. For example, as illustrated in Fig. 4,
event e11 is raised if and only if service P1 transitions from

s10 to s12, that is, s10
t10−−→ s11

t11−−→ s12. Since the guarded
condition of t10 is always true, P1 can transition from s10
to s11. According to the action in t10, state s11 should sat-

isfy the following condition: y = x + 10. If s11
t11−−→ s12,

then s11 ` g11 should be satisfied, that is, the condition
(y = x + 10) ∧ (y < 20) should be satisfied at state s11.
Therefore, under this condition, e11 is raised to follow af-
ter e10. To ease the presentation, we call this condition the
causality condition between events e10 and e11, denoted as
CC(e10, e11).

Note that the causality conditions between events can be
derived during the construction of event interfaces in Al-

gorithm 1. Formally, suppose s
t−→ s′ and SC(s) represent

the constraints s satisfies, then SC(s′) ≡ SC(s) ∧ g ∧ a,
where g and a are the guarded condition and action in t,
respectively4. We can iteratively apply this rule during the
traversal of a service in Algorithm 1 to calculate the causality
conditions between every exposed event and its direct cause.
Suppose event es1→s2 is the direct cause of esk→sk+1 , that

is, ∃s1
t1−→ s2

t2−→ · · · tk−→ sk+1 and no event is raised during

s2
t2−→ s3

t3−→ · · ·
tk−1−−−→ sk. CC(es1→s2 , esk→sk+1) is equiv-

4We can always rename the variables to make sure each
variable is assigned the value only once. Therefore, we can
calculate the constraint of SC(s′) in this way.



Figure 4: Causality conditions for events.

alent to SC(s1) ∧ (
∧k

j=1(gj ∧ aj)) where gj and aj are the
guarded condition and action in transition tj , respectively.

Let EI ≡ (E,R) be an event interface for service P , EI
can be extended to include the local causality conditions be-
tween events, that is, EI ′ ≡ (E,R′), where ∀(e1, e2) ∈ R :
(e1, e2, CC(e1, e2)) ∈ R′, and vice versa. By attaching the
local causality conditions into the event interfaces as well,
service consumers can integrate them into global constraints
for the service composition and apply constraint solving
techniques to generate the test cases for each given feasible
observation. An alternative approach is that each involved
service keeps its own local causality conditions invisible to
service consumers and collaborates with its partner services
to generate the test cases based on their own causality con-
ditions. In this paper, we illustrate the former and leave the
latter as future work.

Similar to the calculation of causality conditions between
events, the global constraints for a potentially feasible obser-
vation can be calculated iteratively. Let EI ′i(i = 1..n) be the
extended event interface of service Pi, and o ≡ (h1, · · · , hn)
be a potentially feasible observation, the global constraint
that must be satisfied for o is denoted as GC(o). Sup-
pose o ⇒ o′, where o′ ≡ (h1, · · · , hie, · · · , hn), then GC(o′)
≡ GC(o) ∧ CC(tail(hi), e). For example, given a poten-
tially feasible observation o1 ≡ (e10e11e13e15, e20e21e23e25)
in Fig. 4 and the causality conditions among the events in o1,
GC(o1) ≡(y = x+10) ∧ (y < 20) ∧ (z1 = 2y) ∧ (z1 < 30) ∧
(u1 = z1 − 6) ∧ (w = u1 + 2). When GC(o1) is satisfied, o1
can be observed by matching the exposed events from the
service composition. By applying constraint solving tech-
niques to GC(o1), service consumers can obtain a solution
{x = 2, y = 12, z1 = 24, u1 = 18, w = 20}. This solution
indicates a test case (that is, {x = 2}) to cover the feasible
observation o1.

In practice, a test case may involve many interactions be-
tween the service consumer and the service composition be-
ing tested. For example, a customer needs to input the query
condition, receive the query result, input the confirmation
etc. We can model the test case as a service involved in the
service composition as well. The generation of a test case is
the solution to the local variables inside the test case service
satisfying the global constraints.

4. EVALUATION
As illustrated in Section 3, our approach makes use of

events exposed by services and event interfaces to determine
test coverage of a service composition as a whole and to de-
rive test cases for the composition. This section evaluates
the approach quantitatively by comparing it to existing work

in terms of coverage rate, effectiveness in fault-detection and
test case generation. We also evaluate the running time com-
plexity of our algorithms and overhead for event exposure.

4.1 Experimental Setup
We use three open-source service compositions to evalu-

ate our work: A supply-chain application [28] (denoted as
SC), a loan approval application [13] (denoted as LA) and a
book ordering application [24] (denoted as BO). Each appli-
cation is characterized in Table 7 by listing the number of
services, states, transitions, and events exposed for our ap-
proach. These applications are also used for service testing
by others [2, 14, 20, 30].

Table 1: Applications and descriptive statistics
Services #States #Trans. #Paths #Events

SC

s1 15 19 6 12
s2 12 15 5 7

Comp. 25 30 18 19

LA

s1 5 7 3 8
s2 8 9 3 8
s3 6 8 4 10

Comp. 24 29 10 26

BO

s1 14 17 5 11
s2 10 13 5 9

Comp. 24 29 15 20

In the first experiment, we evaluate the coverage percent-
age in testing and the effectiveness in fault detection of our
approach. We use the approach proposed by Bartolini et al.
as a baseline [1]. In the baseline approach, we leverage the
testing based on the coverage percentage of each involved
third-party service. We compare the coverage percentage
of a service composition as a whole in testing using our ap-
proach (denoted as OA) and the baseline approach (denoted
as EA). To evaluate the effectiveness in fault detection, we
measure and compare the fault-detection rate [12] of both
approaches.

To evaluate the fault-detection rate, faulty versions of ser-
vice compositions are needed. However, to the best of our
knowledge, few faulty versions are reported by developers.
Therefore, we generate different faulty versions of service
compositions by seeding one fault into the three original
service compositions following the guidelines in [12]. To
be fair, we seed two types of faults: Faults of Type 1 are
internal to a service (e.g., missing functionality), and usu-
ally can be detected by unit testing of the service; faults
of Type 2 represent integration faults that are caused by
inconsistency among services (e.g., inconsistent items pro-
duced by Services 1 and 2 in Fig. 1). Faults of Type 2 are
usually specific to some particular paths across different ser-
vices in a service composition. In total, we create 30 faulty
versions (Type 1: SC(6), LA(4), BO(5) and Type 2: SC(6),
LA(4), BO(5)). Detailed description of services and seeded
faults can be found in the appendix.

We then generate test suites for our approach and the
baseline approach. We randomly select a test case from a
test pool and execute a target version of a service composi-
tion over the test case. If the test case improves the coverage
percentage reported by OA or EA5, then it is added to the

5Note that the coverage percentage reported by our ap-
proach is equivalent to the ratio of the number of feasible
observations observed against the total number of poten-
tially feasible observations; whereas the value reported by



test suite for the corresponding approach. The test case se-
lection procedure terminates if 100% coverage is achieved
with the maximum length of a path set to 100, or if af-
ter a maximum number (500) of trials, the coverage is not
improved. This procedure is repeated 2,000 times for each
version. The fault-detection rate is calculated as the ratio
of the number of test suites that can detect the fault in the
version against the total number of test suites selected. The
real coverage percentage calculated in testing is equivalent
to the ratio of the number of executed paths against the
total number of potential paths in the service composition.

In the second experiment, we evaluate the effectiveness
of test case generation for service compositions. We use the
random testing approach [19] as a baseline, that is, test cases
are randomly generated to test a service composition. To
evaluate the effectiveness of test case generation, we measure
the number of test cases needed to cover each service com-
position with differently given coverage percentages (cover
the paths of the service composition as a whole). The test
case generation procedure terminates if 100% coverage is
achieved, or if after a maximum number (200) of trials the
coverage is not improved. Whenever the coverage percent-
age is updated, the total number of test cases needed to
reach the coverage percentage is recorded. The test case
generation procedure is repeated 100 times for each service
composition. The number of test cases needed in both ap-
proaches is compared.

Finally, we evaluate the complexity of our algorithms. We
randomly generate a set of services with the number of states
varying from 1,000 to 10,000, and apply our algorithms to
derive event interfaces. The overhead for exposing events at
runtime for each service is also recorded. We also construct
potentially feasible observations for randomly generated ser-
vice compositions with the number of states varying from
1,000 to 10,000. The experiment is repeated 1,000 times
and the average time needed for both algorithms and run-
time overhead for event exposure is recorded.

4.2 Experiment Data Analysis
In this section, we analyze and report the experimental

results. In the first experiment, the minimum, mean, and
maximum coverage percentage during the testing of both ap-
proaches are shown in Fig. 5(a). In each case, our approach
has better coverage percentage than the existing approach.
In particular, our approach has 15%, 40%, and 40% higher
coverage percentage than the existing approach for the ap-
plication LA, 14%, 35%, and 40% for SC, and 15%, 17%,
23% for BO, respectively.

The fault-detection rates for each category of faults and
the aggregated results are shown in Fig. 5(b). The results
show that our approach has a much higher fault-detection
rate than the existing approach, especially for faults of Type 2.
In particular, with respect to fault-detection rate for faults
of Type 1, Type 2 and overall, our approach achieves 0.16,
0.25, and 0.20 more than the existing approach for the ap-
plication LA, and 0.05, 0.41, and 0.23 more for SC, and 0.09,
0.17, and 0.13 more for BO, respectively.

Since the drop in coverage percentage and effectiveness of
EA may be due to fewer test cases in its test suites, we ran-
domly added some extra test cases to the test suites in EA to
make sure that the number of test cases is equivalent to that

the existing work is equivalent to the average percentage of
the path coverage rate reported by all the involved services.

in OA. We repeated the experiment 2,000 times, and the re-
sults are shown in Fig. 5(c) and Fig. 5(d). Now, the average
coverage percentage of the existing approach is improved,
but our approach still achieves at lease 10%, 16%, and 20%
more coverage percentage than the existing approach for the
minimum, mean, and maximum cases, respectively.

For the overall fault-detection rate, our approach still achie-
ves 0.02, 0.13, and 0.12 higher as compared to the existing
approach for the LA, SC, and BO application scenarios, re-
spectively. However, the fault-detection rate for faults of
Type 1 achieved by the existing approach is a little higher
(0.02 and 0.05) than that of our approach for LA and SC,
although the coverage percentage of the existing approach
is lower than that of ours. This may be because faults of
Type 1 are local to certain individual services in a service
composition. By randomly adding extra test cases to the
existing approach, all paths of a service can be covered with
similar probability. However, in our approach, the possibil-
ity of covering a path in a service depends on other services
in a service composition. As a result, certain paths in a
service may be covered with more probability whereas the
others are covered with less probability. Therefore, faults
of Type 1 are more likely to be discovered by a test suite
that covers all the paths of a service evenly in the existing
approach. The fault-detection rate for faults of Type 2 in
our approach is still higher than the existing approach (that
is, 0.06, 0.29, and 0.16 for the LA, SC and BO applications,
respectively). This is because faults of Type 2 are across
different services, and our approach achieves a higher cov-
erage percentage than the existing approach. As a result,
faults of Type 2 are more likely to be discovered using our
approach. This result implies that our approach is more
useful to detect integration faults in a service composition.

For the second experiment, Fig. 5(e) illustrates the num-
ber of test cases needed using both our approach (denoted as
OA) and the random generation approach (denoted as EA-
RD) to achieve the given coverage percentage in all the three
applications. The figure shows that the number of test cases
needed using the random testing approach increases dramat-
ically when the coverage percentage increases, whereas the
number of test cases needed in our approach is much smaller
(average 80% less) than that of the existing approach and
nearly linear to the coverage percentage.

The running time of our algorithms and overhead for event
exposure (denoted as EP-OH) are shown in Fig. 5(f). The
results show that it takes less than 1 second to derive an
event interface using Algorithm 1 and less than 0.1 second
to expose all the declared events at runtime for a service with
10,000 states. For a service composition with 10,000 states,
Algorithm 2 uses less than 800 seconds to construct all the
potentially feasible observations. Therefore, the overhead
for both algorithms and event exposure are small.

4.3 Threats to Validity
The validity of the experimental results may be threatened

in the following ways:
Construct validity. The experimental results may be

invalid if concepts were mismeasured using wrong variables.
One purpose of our experiments is to evaluate the benefits
of our approach, which include accurate coverage reasoning,
more adequate testing of a service composition, and effec-
tiveness of test case generation. Therefore, we measured the
quantitative benefits of our approach in terms of coverage
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Figure 5: Coverage percentage, fault-detection rate, number of test cases, and time complexity.

rate, fault-detection rate and number of test cases needed.
Internal validity. Confounding factors like the types of

seeded faults and test case selections may affect the cause-
effect relationships in the experiments if the seeded faults are
sensitive to only particular paths across the service compo-
sition or the test cases are selected to cover each service well
but only cover a few paths in the service composition as a
whole. We alleviate the impacts of these factors by seeding
different types of faults evenly across a service composition
following the guidelines from [12] and randomly selecting
test cases from a large pool of test cases.

External validity. To make sure that the experiments
can be generalized, we use three representative applications
in the experiments because few real-life service composition
applications are publicly available. Such applications are
also used in existing service testing work [2, 14, 20, 30].

Theoretical reliability. Finally, we repeated the exper-
iments many times to remove accidental errors.

5. DISCUSSION
Deriving the formal model. In this paper, we model a

service as a finite state machine. In practice, services may be
implemented in BPEL and other languages. We can apply
many existing work to transform BPEL services into for-
mal models, such as finite state machines [11] and process
algebras [10] to just name a few. On the other hand, to
derive the causality conditions among events, the semantics
of actions are needed. Some existing Web service standards
(like OWL-S [27]) provide such semantics for services (e.g.,
the pre/post conditions). In addition, the formal models of
services with the semantics of actions can be derived using
symbolic execution techniques [7]. Our work can be applied
to the model based on the existing work.

Event generation and propagation. In our work, ser-

vices need to generate and propagate events to service con-
sumers during testing. We make no assumptions on how
services do that. In practice, aspect-oriented programming
techniques can be used to generate events in a way trans-
parent to the service implementations. Events can be propa-
gated to service consumers using a pub/sub middleware [15],
or using existing standards like WS-Eventing [27].

Asynchronous communication. To ease the presen-
tation and illustration of our approach, we assume services
communicate with each other using synchronous communi-
cation. Our approach is also applicable to asynchronous
communication. To support asynchronous communication,
queues can be introduced in Definitions 5 and 6 to buffer the
asynchronous messages from partners. A feasible execution
and a feasible observation can be derived in the same way.

Privacy concern. In our work, only necessary events
are exposed to abstract and reveal coverage-related internal
state changes inside a service. All other state changes inside
a service and how states are changed (i.e., by what tasks in
the business logic) remain invisible to service consumers. In
this way, the privacy concern of service providers is respected
to a large extent. On the other hand, sometimes the causal-
ity conditions for events may be related to business interests
(e.g., the decision making strategies to choose different ex-
ecution paths inside a service etc) so that service providers
may not be willing to expose them. An alternative solution
is that each service provider can derive the final conditions
that must be satisfied for its own service along each given
feasible observation, and provide it to service consumers to
avoid revealing individual decision making strategies. This
collaborative solution can be applied when the causality con-
ditions are unavailable from the service formal model. We
will explore in this direction in our future work.

Constraint solving. Our approach applies constraint



solving techniques to derive test cases for given feasible ob-
servations. Constraints may not always be solvable. In this
case, our approach can still be applied to determine test cov-
erage using the test cases generated by existing work (e.g.,
random testing [19]). An alternative approach is to apply
the aforementioned collaborative approach to generate test
cases for service compositions.

Parallel events. In practice, a BPEL process may in-
volve concurrent executions (e.g., flows), which may gener-
ate events to interleave with each other in many ways. The
finite state machine model can describe all the possible in-
terleavings as different paths. Service providers can also
choose to keep some combinations and remove the others
in the event interface to reduce the number of paths (since
these different combinations corresponding to the same con-
current execution paths) based on the testing requirements
(e.g., examining every possible interleaving is needed in some
critical requirements).

Composite Web services. In a service composition,
the involved services may be composed of other services.
The coverage-equivalent event interface of a composite ser-
vice should be derived based on the event interfaces of its
composed services. This requires to aggregate the events
from the involved services into high-level events and con-
struct their causality relationships and conditions. We will
explore this in our future work.

6. CONCLUSIONS
White-box testing of service compositions is difficult be-

cause service providers usually hide the service implemen-
tation details due to business interests or privacy concerns.
This paper presents a novel approach to white-box test ser-
vice compositions based on event exposure from Web ser-
vices. By deriving coverage-equivalent event interfaces from
service implementations, events are defined and exposed from
services to accurately determine the test coverage of a ser-
vice composition at runtime. In this way, service consumers
can gain confidence on how adequately a service composition
has been tested. An approach to effectively design test cases
based on event interfaces is also proposed and the correct-
ness of the approach is proven. Algorithms are developed
to derive coverage-equivalent event interfaces and construct
feasible observations. The experimental results show that
our approach outperforms existing approaches in terms of
coverage rate, fault-detection rate and effectiveness of test
case generation.
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APPENDIX
A. PROOF OF THEOREM 1

Part 1: Given a feasible execution ((s1,j1 , w1), · · · , (sn,jn , wn)) of P , according to its Definition, there exists a sequence
of s0 → si1 → · · · → sik, where sik ≡ ((s1,j1 , w1),· · · , (sn,jn , wn)). We can construct a feasible observation (h1, h2, · · · ,
hn) for this feasible execution in the following way: In the beginning, that is, in state s0, hi ≡ {ei,0}, where ei,0 is the start
event of Pi. Suppose an event ej ∈ Ei is raised during sil → si(l+1), according to the causality definition, (tail(hi), ej) ∈ Ri.
Therefore, based on Definition 6, (h1, h2, · · · , hn)⇒ (h1, h2, · · · , hiej , · · · , hn). Hence, during each step of s0 → si1 · · ·→ sik,
if an event defined in an event interface is exposed, we can construct a feasible observation from current observation with this
new generated event.

Part2: Given a feasible observation (h1, h2, · · · , hn), according to its Definition, there exists a sequence (e1,0, e2,0, · · · ,
en,0) ⇒· · ·⇒(h1, h2, · · · , hn), where ei,0 is the start event of Pi. We can construct a feasible execution of P for this feasible
observation in the following way: In the beginning, that is, the observation is (e1,0, e2,0, · · · , en,0), and the service composition
is in the initial state s0. Suppose (e1,0, e2,0, · · · , en,0) ⇒(e1,0, e2,0, · · · , ei,0ei,1, · · · , en,0), then (ei,0, ei,1) ∈ Ri. According to

the Definition of causality, there exists an execution of service Pi, that is, si,0
ti,1−−→ · · · si,j−1

ti,j−−→ si,j , and ei,1 ≡ esi,j−1→si,j .

For each step si,l−1

ti,l−−→ si,l, according to Definition 5, we can construct a corresponding feasible execution sl−1 → sl for
this service composition. Therefore, given a feasible observation (e1,0, e2,0, · · · , en,0)⇒ · · · ⇒ (h1, h2, · · · , hn), there exists a
corresponding feasible execution ((s1,0, {}),· · · , (sn,0, {}))→ ((s1,j1 , w1),· · · , (sn,jn , wn)).

Based on the Part1 and Part2, the conclusion follows.

B. APPLICATIONS AND SEEDED FAULTS

Table 2: Description of Approval Service
t1 receive approval request t2 make decision
t3 reject approval t4 send result
t5 calculate approval t6 reject approval
g1 amount < 9 g2 amount ≥ 9
g3 reject = true g4 reject = false

Table 3: Description of Risk Assessment Service
t1 receive assessment request t2 check record
t3 check deposit t4 assign low-risk level
t5 send result t6 assign high-risk level
t7 assign high-risk level t8 assign high-risk level
g1 amount < 3 g2 amount ≥ 3
g3 hasrecord = false g4 hasrecord = true
g5 hasdeposit = true g6 hasdeposit = false

Table 4: Description of Loan Service
t1 receive loan request t2 send riskassess request
t3 receive riskassess result t4 approve loan
t5 notification t6 loan approval request
t7 loan approval result t8 assign approval
t9 loan approval request
g1 amount < 5 g2 amount ≥ 5
g3 risklevel = low g4 risklevel = high
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Figure 6: Approval Service

Table 5: Description of Seeding Faults for LoanApproval Application
Faulty Name Fault Type Fault Description

f1 Type 1 Approval: the threshold of g1 and g2 are changed to affect the service locally
f2 Type 2 Approval: g3 and g4 are changed to generate inconsistent results
f3 Type 2 Loan: the threshold of g1 and g2 is chanted to generate inconsistent results
f4 Type 1 Loan: g1 and g2 are changed locally
f5 Type 1 Loan: g3 and g4 with additional constraints
f6 Type 1 Loan: t8 failure with wrong variable
f7 Type 2 RiskAssessment: g3 and g4 are exchanged to generate inconsistent results
f8 Type 2 RiskAssessment: g1 and g2 have wrong threshold value to generate inconsistent results
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Figure 9: Book Ordering Service

Table 6: Description of Book Ordering Service
t1 receive customer request t2 get customer info
t3 query customer credit t4 check customer credit
t5 prepare delivery t6 deliver result
t7 payment request t8 query credit level
t9 notify no enough credit t10 customer confirm
t11 payment preparation t12 payment transaction
t13 receive approval t14 prepare delivery
t15 receive new amount t16 prepare new payment
t17 prepare delivery
g1 acredit request ≤ 0 g2 credit request > 0
g3 credit level ≤ 0 g4 credit level ≥ credit check request
g5 credit level < credit check request g6 new amount ≤ credit level + account credit &

new amount > account credit
g7 new amount > credit level + account credit |

new amount ≤ account credit
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Table 7: Description of Credit Card Service
t1 receive payment request t2 check customer credit
t3 calculate credit promotion t4 check interests
t5 calculate credit t6 send credit level
t7 receive payment t8 approve result
t9 send payment result t10 calculate credit
t11 calculate credit t12 calculate credit
t13 calculate credit
g1 customerID < 6 g2 customerID ≥ 6
g3 creditcard credit ≥ credit check request &

hasOneY earContractP lan == false
g4 creditcard credit ≥ credit check request &

hasOneY earContractP lan == false
g5 creditcard credit < credit check request ∗

2&hasInterests == true
g6 creditcard credit ≥ credit check request ∗

2&hasInterests == true

Table 8: Description of Seeding Faults for BookOrdering Application
Faulty Name Fault Type Fault Description

f1 Type 1 Credit Card: t3 generates wrong result
f2 Type 2 Credit Card: t10 generates inconsistent result
f3 Type 2 Credit Card: t12 generates inconsistent result
f4 Type 1 Credit Card: g5 and g6 with additional constraints
f5 Type 2 Credit Card: t5 generates inconsistent result
f6 Type 2 Book Ordering: g1 and g2 with additional constraints to generate inconsistent decisions
f7 Type 1 Book Ordering: g3 with additional constraints
f8 Type 2 Book Ordering: g4 and g5 with wrong constraints to generate inconsistent results
f9 Type 1 Book Ordering: t11 generates failure for particular customers
f10 Type 1 Book Ordering: t16 generate side effects for particular customers

Table 9: Description of Manufacturer Service
t1 receive manufacturing request t2 query stock
t3 complementation t4 sending result
t5 query factoryA t6 factoryA Produce request
t7 query factoryB t8 factoryB Produce
t9 query factoryC t10 factoryC Produce
t11 complete assign
g1 manufacturer stock ≥ requested g2 requested > manufacturer stock
g3 requested ≤ manufacturer stock +

factoryA can produce
g4 requested > manufacturer stock +

factoryA can produce
g5 requested ≤ manufacturer stock +

factoryA can produce + factoryB can produce
g6 requested > manufacturer stock +

factoryA can produce + factoryB can produce
g7 requested ≤ manufacturer stock +

factoryA can produce + factoryB can produce +
factoryC can produce

g8 requested > manufacturer stock +
factoryA can produce + factoryB can produce +
factoryC can produce

Table 10: Description of Retailer Service
t1 receive customer request t2 query warehouseA
t3 transaction for A t4 deliver product
t5 prepare complement warehouseA t6 Complement warehouse
t7 wait for manufacturer t8 assign complemented
t9 query warehouseB t10 transaction for B
t11 prepare complement warehouseB t12 query warehouseC
t13 transaction for C t14 prepare complement warehouseC
g1 product type == 0 g2 product type == 1
g3 product type == 2 g4 stockA ≥ amount
g5 stockA < amount g6 stockB ≥ amount
g7 rstockB < amount g8 stockC ≥ amount
g9 stockC < amount
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Table 11: Description of Seeding Faults for SupplyChain Application
Faulty Name Fault Type Fault Description

f1 Type 1 Manufacturer: g1 and g2 are exchanged
f2 Type 1 Manufacturer: g3 and g4 are exchanged
f3 Type 1 Manufacturer: g7 and g8 are exchanged
f4 Type 2 Manufacturer: t3 generates inconsistent result
f5 Type 2 Manufacturer: t6 generates inconsistent result
f6 Type 1 Manufacturer: t8 generates wrong result
f7 Type 1 Retailer: the threshold of g1 is changed
f8 Type 1 Retailer: g8 and g9 have additional constraints
f9 Type 2 Retailer: g6 and g7 with wrong variable to generate inconsistent decisions
f10 Type 2 Retailer: t5 calculates wrongly for some range of input
f11 Type 2 Retailer: t11 calculates wrongly for some range of input
f12 Type 2 Retailer: t14 calculates wrongly for some range of input
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