
Towards an Extensible Efficient Event Processing Kernel

Mohammad Sadoghi
∗

Middleware Systems Research Group
Department of Computer Science

University of Toronto, Canada
mo@cs.toronto.edu

ABSTRACT

The efficient processing of large collections of patterns (Boolean
expressions, XPath expressions, or continuous SQL queries) over
data streams plays a central role in major data intensive applications
ranging from user-centric processing and personalization to real-
time data analysis. On the one hand, emerging user-centric appli-
cations, including computational advertising and selective informa-
tion dissemination, demand determining and presenting to an end-
user only the most relevant content that is both user-consumable
and suitable for limited screen real estate of target (mobile) devices.
We achieve these user-centric requirements through novel high-
dimensional indexing structures and (parallel) algorithms. On the
other hand, applications in real-time data analysis, including com-
putational finance and intrusion detection, demand meeting strin-
gent subsecond processing requirements and providing high-freq-
uency and low-latency event processing over data streams. We
achieve real-time data analysis requirements by leveraging recon-
figurable hardware – FPGAs – to sustain line-rate processing by
exploiting unprecedented degrees of parallelism and potential for
pipelining, only available through custom-built, application-specific,
and low-level logic design. Finally, we conduct a comprehensive
evaluation to demonstrate the superiority of our proposed tech-
niques in comparison with state-of-the-art algorithms designed for
event processing.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information filtering

General Terms

Algorithms, Design, Measurement, Experimentation, Performance

Keywords

Boolean Expression Indexing, Publish/Subscribe, Complex Event
Processing, Data Streams, Data-centric Workflows, and FPGAs

∗PhD Adviser: Hans-Arno Jacobsen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12 PhD Symposium, May 20, 2012, Scottsdale, AZ, USA.
Copyright 2012 ACM 978-1-4503-1326-1/12/05 ...$10.00.

1. INTRODUCTION
Efficient event processing is an integral part of a growing num-

ber of web and data management technologies ranging from user-
centric processing and personalization to real-time data analysis.
In user-centric processing applications, there are computational ad-
vertising [28, 10], online job sites [17, 28], and location-based
services for emerging applications in the co-spaces [1, 19]; com-
mon to all are patterns and specifications (e.g., advertising cam-
paigns, job profiles, service descriptions) modeled as Boolean ex-
pressions, XPath expressions, or SQL queries and incoming user
information (e.g., user profiles and preferences) modeled as events
using attribute-value pairs, XML document, or relational tuples.
In the real-time analysis domain, there are (complex) event pro-
cessing [11, 2, 6, 7, 5], XML filtering [3, 18, 15], intrusion detec-
tion [27], and computational finance [23]; again, common among
these applications are predefined set of patterns (e.g., investment
strategies and attack specifications) modeled as subscriptions and
streams of incoming data (e.g., XML documents, data packets,
stock feeds) modeled as events.

Unique to user-centric processing and personalization are strict
requirements to determine only the most relevant content (e.g., ads)
that is both user-consumable and suitable for the often limited screen
real estate of client devices [17, 28, 10]. In addition, the user-
centric processing demands scaling to millions of patterns and spec-
ifications (e.g., advertising campaigns) for supporting large-scale
enterprise-level user-services, processing latency constraints in the
subsecond range for meeting an acceptable service-level agreement,
and improve expression expressiveness for capturing interesting
patterns and desired preferences. To address these challenges using
a software-based approach, we develop and design an effective al-
gorithms and high-dimensional indexing structures [20, 8, 21, 22]
to achieve processing large volume of incoming user information
and to serve user-relevant contents.

Unique to real-time data analysis applications are critical re-
quirements to meet the ever growing demands in processing large
volumes of data at predictably low-latencies across many appli-
cation scenarios. The need for more processing bandwidth is the
key ingredient in high-throughput real-time data analysis that en-
ables processing, analyzing, and extracting relevant information
from streams of incoming data. Therefore, as proliferation of data
and bandwidth continues, it is becoming essential to expand the
research horizon to go beyond the conventional software-based ap-
proaches and adopt other key enabling technologies such as recon-
figurable hardware in the form of FPGAs. FPGAs are cost-effective
and energy-efficient solutions that are increasingly being explored
to accelerate data management applications. On this front, using
a hardware-based approach, through FPGAs, we exploit the in-
herent hardware parallelism by creating custom-built, application-

specific, and low-level logic design in order to achieve real-time
event processing on hardware [23, 26, 25, 24].

In particular, at the core of any efficient event processing plat-
form lies a kernel that solves the matching problem (i.e., the focus
of this thesis.) We define the stateless matching problem as:

Given an event ω (e.g., a user profile) and a set of Boolean

expressions Ω (e.g., advertising campaigns), find all expressions

Ωi ∈ Ω satisfied by ω.
This definition can be extended to support stateful matching by

incorporating time- or count-based sliding window semantics in or-
der to define the matching problem over a snapshot of an observed
finite portion of the event stream. In addition, our expressions
are reformulated as SQL queries (instead of Boolean expressions)
extended with sliding window semantics. Likewise, the stateful
matching problem is defined as follows:

Given a stream of events (i.e., a bag of 〈ω, τ 〉 tuples, where ω is

an event at time τ) and a collection of continuous SQL queries Q,

the SQL queries are continuously evaluated over the event stream.

We extract five challenges of paramount importance from ap-
plications that rely on event processing, in particular, when pat-
terns are defined as Boolean expressions, which is the primary fo-
cus of this paper. First and foremost, the index structure designed
for matching Boolean expressions must support top-k matching to
quickly retrieve only the most relevant expressions, which is not ad-
dressed by prior Boolean expression matching approaches (e.g., [2,
7].) Furthermore, the relevance computation must be based on a
generic and preference-aware scoring function, which is not ad-
dressed by prior approaches (e.g., [17].) Moreover, the top-k model
must cope with much higher dimensionality (e.g., a dimension can
represent an attribute in the user profile such as age, gender, and
location) that is beyond the scope of dominant database top-k tech-
niques (e.g., [14]) and skyline query processing (e.g., [4].) In gen-
eral, the prevalent space dimensionality in event processing ap-
plications is in hundreds (or thousands), namely, orders of mag-
nitude larger than capabilities of existing multi-dimensional and
high-dimensional structures developed in the database community
(e.g., [12].) Second, the index must support predicates with an
expressive set of operators over continuous and discrete domains,
which is also not supported by prior matching approaches (e.g., [2,
7, 28].) Third, the index must enable dynamic insertion and dele-
tion of expressions, often disregarded as a requirement in matching
algorithm design (e.g., [2, 17, 28].) Fourth, the index must em-
ploy a dynamic structure that adapts to changing workload distri-
butions and expression schemata, also often disregarded in most
matching algorithm designs (e.g., [2, 17, 28].) Finally, the index
structure must scale to millions of Boolean expressions and afford
low-latency and high-throughput expression matching demanded
by most user-centric and real-time data analysis applications.

2. THESIS OUTLINE
This thesis addresses the problem of efficient event processing

over data streams by proposing a solution that consists of three lay-
ers1: the higher-, the core-, and the lower-layers. At the core-layer
of our solution lies an efficient Boolean expression matching ker-

nel [20, 8, 21, 22]. The extensibility of this matching kernel2 gives
rise to the higher-layer of our solution that supports application
requirements including top-k processing [22], XML filtering and
dissemination [20], and (complex) event processing [8]. Another
major benefit of our matching kernel is its regular, more tabular or-

1As part of this thesis, we also developed a Boolean expression
workload generator (BEGen): http://msrg.org/datasets/BEGen
2The matching kernel is implemented in C (47K lines of code.)

Figure 1: Thesis Overview

ganization of its data structure, as well as Boolean expression and
attribute-value pairs-based nature of its base language, that lends
itself well to parallel and hardware processing. As a result, at the
lower-layer, the event processing performance is further boosted by
leveraging an unprecedented hardware parallelism [23, 26, 24, 25],
only available through custom-built, application-specific, and low-
level logic design. Figure 1 illustrates our three-layer architecture.

In particular, at the lower-layer, (1) we extend our solution to en-
able complex event processing [24] (i.e., stateful matching.) In par-
ticular, we develop high-throughput, custom circuits to implement
the relational algebra over a window of input events for effective
processing of SPJ (Select-Project-Join) queries [24]. The hardware
implementation enables a high degree of parallelism and pipelining
beyond the reach of software-based implementations. These cus-
tom circuits serve as a library of operators. (2) We introduce a novel
multi-query optimization technique inspired from highly paralleliz-
able rule-based system designs by mapping an SPJ-query into a
Rete-like operator network [24]. We exploit the overlap among
SPJ query plans by constructing a single global query plan to be
executed in hardware. (3) We design software-to-hardware multi-
query processing techniques that map a set of SPJ queries into a
Rete-like global query plan. Subsequently, the global plan is con-
verted into Hardware Description Language (HDL) code using our
“hardware library” of custom building blocks for the various rela-
tional algebra operators. These mapping techniques are akin to a
compiler that can process a query expressed in our language into a
custom circuit that processes event streams.

At the higher-layer, we present BE*-Tree that is geared towards
efficiently determining the most relevant expressions (e.g., ads), in
which top-k processing is treated as first class citizens [22]. BE*-

Tree introduces a novel hierarchical top-k processing scheme that
differs from existing work which relies on a static and a flat struc-
ture [17, 28]. Furthermore, we present GPX-Matcher, a novel en-
coding of XPath expressions and XML documents into expressions
and attribute-value pairs, respectively, that leverages our matching
kernel [20]. Moreover, we formalize the encoding of XPath expres-
sions into predicated-based Boolean expressions. We demonstrate
a matching time in the millisecond range for millions of XPath ex-
pressions which outperforms state-of-the-art algorithms.

Finally, at the core-layer, the BE-Tree family structure achieves
scalability by overcoming the curse of dimensionality through a
(non-rigid) space-cutting technique without restricting the language
expressiveness and structure dynamics [21, 22]. Notably, with re-
spect to scalability, in BE*-Tree, we solve the two critical chal-
lenges common to most multi-dimensional and high-dimensional
structures (e.g., [12]): (1) avoiding indexing non-empty space (2)
minimizing overlap and coverage [22].

These challenges are tackled in BE*-Tree by proposing a bi-direct-

ional tree expansion: (1) a top-down (data and space clustering)
and a bottom-up (space clustering) growths process, which together
enable indexing only non-empty continuous subspaces and adapt-
ing to workload changes; (2) a splitting strategy to systematically
produce and maintain overlap-free subspaces for holding expres-
sions [22]. Furthermore, with respect to adaptability, in BE-Tree,
we introduce a deterministic and a self-adjusting mechanisms that
adapt as expression and event workloads change; thus, BE-Tree’s
main focus is to achieve an insertion-sequence independent dynam-
ics [21].

In the following sections, we, first, formalize our Boolean ex-
pression language and data model; second, we briefly describe the
(common) key structure of BE-Tree and BE*-Tree.

3. LANGUAGE AND DATA MODEL
In this section, we define our Boolean expression language and

spatial event data model followed by our (top-k) matching seman-
tics.

Notation Given an n-dimensional space ℜn, we define the pro-
jection of ℜn onto ℜk as a k-dimensional subspace, denoted by
πd1···dk (ℜ

n) = ℜk, where πd1···dk : ℜn → ℜk, k ≤ n, and each
di ∈ {d1 · · · dk} represents the ith dimension in ℜk and corre-
sponds to the jth dimension in ℜn; for ease of notation, we define
the identity projection as πI(ℜ

n) = ℜn. In addition, we define a
k-dimensional bounding box Bk over ℜk as

Bk = [min1, max1]× · · · × [mink, maxk].

Let ξj(B
k) = [mini, maxi] be the ith boundary in Bk defined

over the ith dimension in ℜk which corresponds to the jth dimen-
sion in ℜn. Let χi(B

k) be the center of the ith boundary in Bk.
Furthermore, let λi(B

k) be the length of the ith boundary in Bk

given by
λi(B

k) = maxi − mini.

Lastly, let µi(B
k) = mini and Mi(B

k) = maxi represent the
minimum and the maximum value of the ith boundary of Bk , re-
spectively.

Expression Language and Subspace Model We support a rich
Boolean expression language that unifies the subscription language
and the event data model. This generalization gives rise to more
expressive matching semantics while still encompassing the tradi-
tional publish/subscribe matching problem.

In our model, a Boolean expression is a conjunction of Boolean
predicates. A predicate is a quadruple: an attribute that uniquely
represents a dimension inℜn; an operator (e.g., relational operators
(<,≤, =, 6=, ≥,>), set operators (∈, /∈), and the SQL BETWEEN

operator); a set of values (for discrete domains) or a range of values
(for continuous domains); and an assigned predicate weight, de-
noted by P attr,opt,val,wt(x) or more concisely as P (x). A predicate
either accepts or rejects an input x such that P attr,opt,val,wt(x) :
x → {True, False}, where x ∈ Dom(P attr) and P attr is the
predicate’s attribute. Formally, a Boolean expression Ω is defined
over ℜn as follows:

Ω = {P
attr,opt,val,wt
1 (x) ∧ · · · ∧ P

attr,opt,val,wt

k
(x)},

where k ≤ n; i, j ≤ k, P attr
i = P attr

j iff i = j.

We extended the semantics of projection to a Boolean expression
in order to enable projecting onto predicates associated with certain
dimensions

πd1···dh
(Ω) = {Ω′ |Ω′ = P

attr,opt,val,wt

1 (x) ∧ · · · ∧ P
attr,opt,val,wt

h
(x),

∀di ∈ {d1 · · · dh}, P
attr
i = di, Pi(x) ∈ Ω}.

Table 1: Predicate Mapping
P attr,opt,val,wt(x) γ(P attr,opt,val,wt(x))

attr < v1 [−∞, v1 − ǫ]
attr ≤ v1 [−∞, v1]
attr = v1 [v1, v1]
attr 6= v1 [−∞,∞]
attr ≥ v1 [v1,∞]
attr > v1 [v1 + ǫ,∞]

attr ∈ {v1, · · · , vm} [v1, vm]
attr /∈ {v1, · · · , vm} [−∞,∞]
attr BETWEEN v1, v2 [v1, v2]

Now, we are in a position to formalize the predicate mapping3

and, ultimately, to (approximately) represent an expression as a k-
dimensional bounding box.

A predicate P attr,opt,val,wt(x) is mapped into a 1-dimensional
bounding box, denoted by γ(P attr,opt,val,wt(x)) = B1, as shown
in Table 1, where ǫ is the machine’s epsilon. Therefore, a predicate
P (x) is covered by B1 = [min1, max1] only if the permitted values
defined by P (x) lie in [min1, max1]; for brevity, we say the predi-
cate is enclosed by B1. Similarly, we say an expression Ω over ℜn

is partially enclosed by Bh w.r.t. the projection πd1···dh , denoted
by Γπ(Ω).

Γπ(Ω) = {Bh |∀P
attr,opt,val,wt

i (x) ∈ π(Ω),

γ(Pi(x)) ∩ ξP attr
i

(Bh) = γ(Pi(x))}.

Furthermore, we say an expression Ω is fully enclosed by Bk

when the identity projection πI is applied, ΓπI (Ω) = Bk. Lastly,
the smallest Bk, or the minimum bounding box (MBB), that (par-
tially) encloses an expression Ω is given by

Γπ
min(Ω) = {argmin

Bk
i

Γπ(Ω) = Bk
i }.

The Boolean expression Ω is said to have size k, denoted by
|Ω| = k, when having k predicates; hence, Ω is represented by
Γmin(Ω) defined over a k-dimensional subspace.

Top-k Matching Semantics Our formulation of subscriptions
and events as expressions enables us to support a wide range of
matching semantics, including the classical publish/subscribe match-
ing: Given an event ω and a set of subscriptions Ω, find all sub-

scriptions Ωi ∈ Ω that are satisfied by ω. We refer to this problem
as the stabbing subscription4 SQ(ω) and formalize it as follows:

SQ(ω) = {Ωi |∀P
attr,opt,val,wt
q (x) ∈ Ωi, ∃P

attr,opt,val,wt
o (x) ∈ ω,

P attr
q = P attr

o ,∃x ∈ Dom(P attr
q), Pq(x) ∧ Po(x)}.

Alternatively, we can (approximately) express stabbing subscrip-
tion as subspace matching in ℜn as follows, where the approxima-
tion is due to the mapping function γ:

SQ(ω) = {Ωi |∀P
attr,opt,val,wt
q (x) ∈ Ωi, ∃P

attr,opt,val,wt
o (x) ∈ ω,

P attr
q = P attr

o , γ(Pq(x)) ∩ γ(Po(x)) 6= ∅}.

We also adopt the popular vector space scoring used in informa-
tion retrieval (IR) systems5 for computing the score of a matched
subscription Ωi for a given event ω (to enable top-k computation),
denoted by score(ω,Ωi), and defined by

3The mapping strategy for predicates with operator ∈, /∈, 6= is es-
pecially effective because the number of predicates per expression
is on the order of tens while the number of space dimensions is on
the order of thousands.
4This is a relaxation of the stabbing query problem, in which inter-
val cutting is generalized to subspace cutting.
5We are not limited to IR scoring, but support any monotonic scor-
ing function.

Figure 2: An overview of BE-Tree/BE*-Tree data structure.

score(ω,Ωi) =
∑

Pq(x)∈Ωi,Po(x)∈ω,P attr
q =P attr

o

P wt
q × P wt

o .

Similarly, we compute the upper bound score for an event ω w.r.t.
an upper bound weight-summary (sumΩwt) for a set of subscriptions
Ω as follows

uscore(ω, sumΩwt) =
∑

Po(x)∈ω

P wt
o × sumΩwt(P

attr
o),

where sumΩwt(attr) returns the upper bound score of attr over
the set of subscriptions Ω which is given by

sumΩwt(attr) = max
Ωi∈Ω,Pq(x)∈Ωi,P

attr
q =attr

P wt
q .

4. BOOLEAN EXPRESSION INDEXING
As part of this thesis, we develop two novel data structures,

namely, BE-Tree [21] and BE*-Tree [22], which are generic index
structures for indexing a large collection of Boolean expressions
(i.e., subscriptions) and for efficient retrieval of the most relevant
matching expressions given a stream of incoming events.

BE-Tree/BE*-Tree Overview BE-Tree (and BE*-Tree
6) supports

Boolean expressions with an expressive set of operators defined
over a high-dimensional continuous space. BE-Tree copes with the
curse of dimensionality challenge through a (non-rigid) two-phase
space-cutting technique that significantly reduces the complexity
and the level of uncertainty of choosing an effective criterion to re-
cursively cut the space and that identifies highly dense subspaces.
The two phases BE-Tree employs are: (1) partitioning which is the
global structuring to determine the next best attribute attri (i.e.,
the ith dimension in ℜn) for splitting the space and (2) (non-rigid)
clustering which is the local structuring for each partition to deter-
mine the best grouping of expressions w.r.t. the expressions’ range
of values for attri. In addition, BE*-Tree not only supports dy-
namic insertion and deletion of expressions similar to BE-Tree, but
it also adapts to workload distributions by incorporating top-down
(data and space clustering) and bottom-up (space clustering) ex-
pansion within each clustering phase.

The data clustering aims to avoid indexing empty space and to
adapt to a skewed workload while space clustering aims to avoid
degeneration of the structure in the presence of frequent insertions
and deletions of expressions. Conceptually, BE*-Tree’s space and
data clustering techniques are a hybrid scheme that takes the best
of both worlds. On the one hand, inspired by adaptiveness of R-
Tree based structure, the data clustering employs data dependent
grouping of expressions to adapt to different workload distribu-
tions and to avoid indexing empty space, and, on the other hand,

6The basic structure of BE-Tree and BE*-Tree are similar; thus,
what follows applies equally to BE*-Tree as well.

inspired by robustness of grid-based structure, the space clustering
employs space dependent grouping of expressions to accommodate
an insertion-independent mechanism. One of the key distinguish-
ing factor between BE-Tree and BE*-Tree is the above-mentioned
non-rigid clustering structure proposed in BE*-Tree, which due to
limited space is not further discussed.

In general, BE-Tree is an n-ary tree structure in which a leaf node
contains the actual data (expressions) and an internal node contains
partial information about data (e.g., an attribute and a range of val-
ues) in its descendant leaf nodes. BE-Tree consists of three classes
of nodes: p-node (partition node) for storing the partitioning infor-
mation, i.e., an attribute; c-node (cluster node) for storing the clus-
tering information, i.e., a range of values; and l-node (leaf node),
being at the lowest level of the tree, for storing the actual data.
Moreover, p-nodes and c-nodes are logically organized in a special
directory structure for fast tree traversal and search space pruning.
Thus, a set of p-nodes are organized in a p-directory (partition di-
rectory), and a set of c-nodes are organized in a p-directory (cluster
directory.) The overall BE-Tree structure is depicted in Figure 2.

Two-phase Space-cutting BE-Tree’s two-phase space-cutting,
the partitioning followed by the clustering, introduces new chal-
lenges such as how to determine the right balance between the
partitioning and clustering, and how to develop a robust principle
to alternate between both. BE-Tree partially addresses these chal-
lenges by exploiting the discrete and finite space and by relying
on deterministic grid-based clustering. Thus, in BE-Tree, we pro-
pose a splitting policy to guide the clustering phase for establishing
not only a robust principle for alternating between partitioning and
clustering but also for naturally adapting to the workload distribu-
tions. We begin discussing the overall structure and the two-phase
cutting dynamics of BE-Tree before presenting the key design prin-
ciples behind BE-Tree.

In BE-Tree, the partitioning phase, conceptually a global adjust-
ing mechanism, is the first phase of our space-cutting technique.
The partitioning phase is invoked once a leaf node overflows (ini-
tially occurs at the root level.) This phase involves ranking each
candidate attri, attributes that appear in the expressions of the
overflowed l-node, in order to determine the most effective attri
for partitioning. Essentially, this process identifies the highest rank-
ing attri, given a scoring function, to spread expressions into
smaller groups (leaf nodes.) In short, partitioning space based on a
high-ranking attri enables the pruning of search space more effi-
ciently while coping with the curse of dimensionality by consider-
ing a single attri for each partitioning phase.

Upon executing the partitioning phase, the high-dimensional in-
dexing problem is reduced to one-dimensional interval indexing,
which paves the way to exploit underlying distribution of a single
attri at a time through BE-Tree’s clustering phase, conceptually
a local adjusting mechanism. The clustering phase, and ultimately
the key component of BE-Tree, consists of (1) a clustering policy
to group overlapping expressions (into buckets) that minimizes the
overlap and the coverage among these buckets and (2) a robust and
well-defined policy to alternate between the partitioning and the
clustering.

The absence of a well-defined policy gives rise to the dilemma
of whether to further pursue the space clustering or to switch back
to the partitioning. Furthermore, a partitioned bucket can no longer
be split without suffering from the cascading split problem. Thus,
a clustering policy that cannot react and adapt to the insertion se-
quence is either prone to ineffective buckets that do not take ad-
vantage of the domain selectivity for effectively pruning the search
space or is prone to suffering from substantial performance over-
head due to the cascading split problem. Therefore, a practical

space clustering must support dynamic insertion and deletion and
must adapt to any workload distributions, yet satisfying the cascad-
ing-split-free property.

In the clustering phase, each group of expressions is referred to
as a bucket. Formally, a bucket is a 1-dimensional bounding box
over attri, denoted by B1, and an expression Ω with predicate
P attr,opt,val,wt

j (x) ∈ Ω is assigned to a bucket only if

attri = P attr
j and γ(Pj(x)) ∩ ξP attr

j
(B1) = γ(Pj(x)).

Furthermore, a bucket has a minimum bounding box (MBB) that
partially encloses all of its expressions Ω if and only if

B1 =
⋃

Ωj∈Ω

Γ
πattri
min (Ωj).

Moreover, each bucket is associated with exactly one c-node in
the BE-Tree, which is responsible for storing and maintaining in-
formation about the bucket’s assigned expressions.

BE-Tree/BE*-Tree Invariance In order to formalize BE-Tree’s
invariance and operational semantics, we must distinguish among
four bucket types: open bucket: a bucket that is not yet partitioned;
leaf bucket: a bucket that has no children (or has not been split);
atomic bucket: a bucket that is a single-valued bucket which can-
not further be split; and home bucket: a bucket that is the smallest
existing bucket that encloses the inserting expression.

The correctness of the BE-Tree operational semantics is achieved
based on the following three rules:

1. insertion rule: an expression is always inserted into the small-
est bucket that encloses it.

2. forced split rule: an overflowing non-leaf bucket is always
split before switching back to the partitioning.

3. merge rule: an underflowing leaf bucket is merged with its
parent only if the parent is an open bucket

Finally, the BE-Tree correctness can be summarized as follows.
INVARIANCE: Every expressionΩ is always inserted into the small-

est bucket that encloses it and a (non-atomic) bucket is always split

first before it is partitioned.

5. FUTURE THESIS DIRECTIONS
At the lower-layer of this thesis proposal, we continue to experi-

ment with various designs that further exploit hardware-parallelism;
in particular, we are currently evaluating a new hardware encod-
ing to utilize the fast on-chip registers and a data placement al-
gorithm (through replication and horizontal data partitioning) that
eliminates chip’s idle areas and resources.

At the higher- and core-layers, in order to enrich expression ex-
pressiveness, we aim to support arbitrary Boolean expressions that
are not limited to only disjunctive normal form expression; a re-
quirement demanded in many application scenarios such as compu-
tational advertising and real-time data analysis. More importantly,
in order to handle the sheer volume of today’s social and enterprise
data, we are extending our algorithm to enable parallel matching
(using OpenMP) and distributed top-k processing and exploring the
possibility of matching computation distribution over MapReduce

abstraction model.
Lastly, at the higher-layer, in order to study the generality, effec-

tiveness, and practicality of our matching semantics and event pro-
cessing language and data model expressiveness, we are developing
safe distribution and parallel execution of data-centric workflows
over our event processing kernel (i.e., a key building block in the
publish/subscribe paradigm.) In essence, we are presenting a novel
reformulation of data-centric workflow that is designed to utilize

the loosely decoupled and distributed nature of publish/subscribe

systems. Furthermore, we are demonstrating the practicality and
expressiveness of our proposal by mapping an industry-based data-
centric workflow, namely, IBM business artifact with Guard-Stage-
Milestone (GSM), into our (extended) event processing language
and data model. In short, the contributions are (1) mapping of
data-centric workflow into publish/subscribe abstraction to achieve
distributed and parallel execution; (2) detailed theoretical analysis
of our proposed mapping; (3) formalizing the complexity of opti-
mal workflow distribution over the publish/subscribe paradigm; and
(4) implementing our proposed mapping over PADRES [9, 16], an
enterprise-grade publish/subscribe infrastructure.

6. REFERENCES
[1] R. Agrawal, A. Ailamaki, P. A. Bernstein, et al. The claremont report on

database research. SIGMOD Rec.’08.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In PODC’99.

[3] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In VLDB’00.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE’01.

[5] L. Brenna, A. Demers, J. Gehrke, M. Hong, Ossher, Panda, Riedewald, Thatte,
and White. Cayuga: high-performance event processing engine. SIGMOD’07.

[6] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering in
publish-subscribe systems using binary decision diagrams. In ICSE’01.

[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for fast pub/sub systems. SIGMOD’01.

[8] A. Farroukh, M. Sadoghi, and H.-A. Jacobsen. Towards vulnerability-based
intrusion detection with event processing. In DEBS’11.

[9] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The padres distributed
publish/subscribe system. In ICFI’05.

[10] M. Fontoura, S. Sadanandan, J. Shanmugasundaram, S. Vassilvitski, E. Vee,
S. Venkatesan, and J. Zien. Efficiently evaluating complex Boolean expressions.
In SIGMOD’10.

[11] C. Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell.’82.

[12] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput.

Surv.’98.

[13] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath, S. Hobson, M. H.
Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculín. Introducing
the guard-stage-milestone approach for specifying business entity lifecycles. In
WS-FM’10.

[14] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv.’08.

[15] G. Li, S. Hou, and H.-A. Jacobsen. Routing of XML and XPath queries in data
dissemination networks. In ICDCS’08.

[16] G. Li, V. Muthusamy, and H.-A. Jacobsen. A distributed service-oriented
architecture for business process execution. ACM TWEB’10.

[17] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmugasundaram.
Scalable ranked publish/subscribe. VLDB’08.

[18] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early profile pruning on
XML-aware publish-subscribe systems. In VLDB’07.

[19] B. Ooi, K. Tan, and A. Tung. Sense the physical, walk through the virtual,
manage the co (existing) spaces: A database perspective. In SIGMOD Rec.’09.

[20] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. GPX-Matcher: a generic Boolean
predicate-based XPath expression matcher. In EDBT’11.

[21] M. Sadoghi and H.-A. Jacobsen. BE-Tree: An index structure to efficiently
match Boolean expressions over high-dimensional discrete space. In
SIGMOD’11.

[22] M. Sadoghi and H.-A. Jacobsen. Relevance matters: Capitalize on less (top-k
matching in publish/subscribe). In ICDE’12.

[23] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A. Jacobsen. Efficient
event processing through reconfigurable hardware for algorithmic trading. In
VLDB ’10.

[24] M. Sadoghi, R. Javed, N. Tarafdar, H. Singh, R. Palaniappan, and H.-A.
Jacobsen. Multi-query stream processing on fpgas. In ICDE’12.

[25] M. Sadoghi, H. Singh, and H.-A. Jacobsen. fpga-ToPSS: Line-speed event
processing on fpgas. In DEBS’11.

[26] M. Sadoghi, H. Singh, and H.-A. Jacobsen. Towards highly parallel event
processing through reconfigurable hardware. In DaMoN’11 (Collocated with

SIGMOD).

[27] D. Srivastava, L. Golab, R. Greer, T. Johnson, J. Seidel, V. Shkapenyuk,
O. Spatscheck, and J. Yates. Enabling real time data analysis. PVLDB’10.

[28] S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E. Vee,
R. Yerneni, and H. Garcia-Molina. Indexing Boolean expressions. In VLDB’09.

