
Variations of the Star Schema Benchmark to Test the
Effects of Data Skew on Query Performance

Tilmann Rabl
Middleware Systems

Reseach Group
University of Toronto

Ontario, Canada
tilmann@msrg.utoronto.ca

Meikel Poess
Oracle Corporation

Califonia, USA
meikel.poess@oracle.com

Hans-Arno Jacobsen
Middleware Systems

Research Group
University of Toronto

Ontario, Canada
jacobsen@eecg.utoronto.ca

Patrick O’Neil
Department of Math and C.S.
University of Massachusetts

Boston
Massachusetts, USA

poneil@cs.umb.edu

Elizabeth O’Neil
Department of Math and C.S.
University of Massachusetts

Boston
Massachusetts, USA

eoneil@cs.umb.edu

ABSTRACT

The Star Schema Benchmark (SSB), has been widely used to
evaluate the performance of database management systems
when executing star schema queries. SSB, based on the well
known industry standard benchmark TPC-H, shares some of
its drawbacks, most notably, its uniform data distributions.
Today’s systems rely heavily on sophisticated cost-based
query optimizers to generate the most efficient query exe-
cution plans. A benchmark that evaluates optimizer’s capa-
bility to generate optimal execution plans under all circum-
stances must provide the rich data set details on which op-
timizers rely (uniform and non-uniform distributions, data
sparsity, etc.). This is also true for other database system
parts, such as indices and operators, and ultimately holds
for an end-to-end benchmark as well. SSB’s data generator,
based on TPC-H’s dbgen, is not easy to adapt to different
data distributions as its meta data and actual data genera-
tion implementations are not separated. In this paper, we
motivate the need for a new revision of SSB that includes
non-uniform data distributions. We list what specific modi-
fications are required to SSB to implement non-uniform data
sets and we demonstrate how to implement these modifica-
tions in the Parallel Data Generator Framework to generate
both the data and query sets.

Categories and Subject Descriptors

K.6.2 [Management of Computing and Information
Systems]: Installation Management—benchmark, perfor-

mance and usage measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, March 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/03 ...$15.00.

Keywords

Star Schema Benchmark; PDGF; data skew; data genera-
tion; TPC-H

1. INTRODUCTION
Traditionally, relational schemas were designed using data-

base normalization techniques pioneered by Edgar F. Codd
[4]. Database normalization minimizes data redundancy and
data dependencies. However, Kimball argues that this tra-
ditional approach to designing schemas is not suitable for
decision support systems because of poor query performance
and usability [7]. He further argues that the design of a de-
cision support system should follow a star schema, which
features a fact table containing real live events, e.g., sales,
returns etc., and dimensions further describing these events
by supplying attributes such as sales price, item descriptions
etc. While traditional normalized schemas are designed to
reduce the overhead of updates, star schemas are designed to
increase the ease-of-use and speed of retrieval. These funda-
mental design goals are achieved by minimizing the number
of tables that need to be joined by queries.

Having realized the need to measure the performance of
decision support systems in the early 1990s, the Transaction
Processing Performance Council (TPC) released its first de-
cision support benchmark, TPC-D, in April 1994. Because
at that time the majority of systems followed Codd’s nor-
malization approach, TPC-D is based on a 3rd normal form
schema consisting of 8 tables. Even TPC-H, TPC-D’s suc-
cessor, which was released in April 1999 continued using the
same 3rd normal form schema.

While for the technology available at that time, TPC-D
and TPC-H imposed many challenges, both on hardware
and on database management systems (DBMS). However,
their 3rd normal form schema and uniform data distribu-
tions are not representative any more of current decision
support systems. As a consequence, O’Neil et al. proposed a
star schema version of TPC-H, the Star Schema Benchmark
(SSB) in [11]. SSB denormalizes the data that TPC-H’s
data generator, dbgen, generates. However, its underlying

 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 2 4 6 8 10 12

S
al

es
 in

 B
ill

io
n

U
S

 D
ol

la
rs

Month

Figure 1: US Retail Sales in Billion US Dollars as
Reported by the US Cenus

data generation principles were not changed from TPC-H,
especially its uniform data distributions.
We argue that uniform data distributions are not repre-

sentative for real life systems because of naturally occur-
ring data skew. For instance, retail sales tend to be highly
skewed towards the end of the year, customers are clustered
in densely populated areas and popular items are sold more
often than unpopular items.
Non-uniform data distributions impose great challenges

to database management systems. For instance, data place-

ment algorithms, especially those on large scale shared noth-
ing systems, are sensitive to data skew, but also common
operations such as join, group-by and sort operations can
be affected by data skew, most notably the query optimizer,
is highly challenged to generate the optimal execution plan
for queries in the presence of data skew. This is supported
in a SIGMOD 1997 presentation by Levine and Stephens in
which they noted that a successor of TPC-D should include
data skew [2].
Consider the retail sales numbers per month as reported

by the US census in Figure 1. The graph shows that US
retail sales vary between 15 Billion in January and 35 Billion
in December. Sales stay under 20 Billion per month until
November when they shoot to 25 Billion and then to 35
Billion in December. It is not uncommon that during the
year-end holiday season, often as much as 30% of annual
sales are made within the last two months of the year (and
much of that in the last half of December) [14].
TPC-DS, published in April 2012, includes some data

skew [10], implemented using “comparability zones”, which
are ranges in the data domain of columns with uniform dis-
tributions. The number of comparability zones for a partic-
ular column is limited only by the number of unique values
in this column. However, because of the underlying design
principles of TPC-DS, execution of individual queries is re-
stricted to one comparability zone. While TPC-DS’s ap-
proach for data skew is a step in the right direction, it limits
the effect of data skew greatly, because individual queries
still operate on uniform data.
So far there has not been any industry standard bench-

mark that tests query performance in the presence of highly
skewed data. This paper addresses the need for a modern de-
cision support benchmark that includes highly skewed data.
The resulting new version of SSB includes data skew in single
fact table measures, single dimension hierarchies and mul-
tiple dimension hierarchies. To demonstrate the effects of
data skew on query performance, several experiments were

run on a publicly available DBMS. The results of these ex-
periments underline the need for the introduction of data
skew in SSB.

Because SSB’s current data generator is an adapted ver-
sion of TPC-H’s data generator, which hard codes most
of the data characteristics, a new data generator was im-
plemented using the Parallel Data Generation Framework
(PDGF). It’s design allows for quickly modifying data dis-
tributions as well as making structural changes to the ex-
isting tables. In addition it allows the generation of valid
SQL from query templates similar to qgen of SSB. This
is particularly important as PDGF allows for the genera-
tion of queries in the presence of data skew. While this
paper demonstrate the key aspects of the data generator,
the fully functional data generator is available at http:

//www.paralledatageneration.org/.
In summary, our contributions in this paper are:

• We design and implement a complete data genera-
tor for SSB based on the Parallel Data Generation
Framework (PDGF) that can be easily adapted and
extended.

• We design and implement a query generator for SSB
based on PDGF, which enables the generation of more
realistic queries with parameters that originate from
the data set rather than randomly chosen values.

• We introduce skew into SSB’s data model in a consis-
tent way, which makes it possible to reason about the
selectivity of queries.

• We implement the proposed data skew in our data gen-
erator and demonstrate the effects of the skew on query
processing times.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews those parts of SSB that are relevant to un-
derstanding the concepts discussed in this paper. Section 3
presents our data and query generator implementations in
PDGF. Section 4 suggests and discusses variations of the
star schema benchmark that include various degrees of data
skew including experimental results. Before concluding our
paper, we discuss related work in Section 5.

2. STAR SCHEMA BENCHMARK
The Star Schema Benchmark is a variation of the well

studied TPC-H benchmark [12], which models the data ware-
house of a whole sale supplier. TPC-H models the data in
3rd normal form, while SSB implements the same logical
data in a traditional star schema, where the central fact ta-
ble Lineorder contains the ”sales transaction information“ of
the modeled retailer in form of different types of measures
as described in [7]. SSB’s queries are simplified versions of
the queries in TPC-H. They are organized in four flights of
three to four queries each.

This paper focuses on data skew in columns that are used
for selectivity predicates because data skew in those columns
exhibit the largest impact on query performance. Hence, the
data set and query set need to be considered when introduc-
ing skew into SSB. Therefore, the following two sections first
recap the main characteristics of SSB’s schema and data set
and then analyze the four query flights to ultimately suggest
a representative set of columns for which data skew could
be implemented.

Figure 2: SSB Schema

The uniform characteristics of the TPC-H [1] data set have
been studied extensively in [13]. According to the TPC-H
specification the term “random” means “independently se-
lected and uniformly distributed over the specified range
of values” . That is, n unique values V of a column are
uniformly distributed if P (V = v) = 1

n
. Because TPC-H

and SSB’s data generators use pseudo random number gen-
erators and data is generated independently in parallel on
multiple computers, perfectly uniform data distributions are
impossible to guarantee. Hence, we follow the definition of
uniform as presented in [13].

2.1 SSB Schema and Data Population
In order to create a star schema of TPC-H, SSB denor-

malizes several tables: (i) the Order and Lineitem tables are
denormalized into a single Lineorder fact table and (ii) the
Nation and Region tables are denormalized into the Cus-
tomer and Supplier tables and a city column is added. This
simplifies the schema considerably, both for writing queries
and computing queries as the two largest tables of TPC-H
are pre-joined. Queries do not have to perform the join and
users writing queries against the schema do not have to ex-
press the join in their queries. In SSB, the Partsupp table is
removed, because this table has a different temporal gran-
ularity than the Lineorder table. This is an inconsistency
in the original TPC-D and TPC-H schemas as described in
[11]. Finally, an additional Date table is added, which is
commonly used in star schemas. To summarize, SSB con-
sists of one large fact table (Lineorder) and four dimensions
(Customer, Supplier, Part, Date). The complete schema is
depicted in Figure 2.
Like in TPC-H, all data in SSB is uniformly distributed.

To be consistent with the general star schema approach the
definition of the SSB tables is slightly different from the
definition of TPC-H. The most notable change is the in-
troduction of selectivity hierarchies in all dimension tables.
They are similar to the manufacturer/brand hierarchy in
TPC-H, where the manufacturer (P Mfgr) value is a prefix
of the brand (P Brand) value. We denote this dependency
with P Brand → P Mfgr, meaning that for each P Brand
value there is exactly one P Mfgr value. In the Part table,
SSB adds a category, which extends the TPC-H hierarchy
to P Brand1 → P Category → P Mfgr. Because all data is
uniformly distributed this hierarchy serves as a simple way
to control row selectivity of queries. There are five differ-
ent values for P Mfgr, resulting in selectivity of 1

5
each. For

each of those there exist five different values in P Category
with a selectivity of 1

25
each. Finally, the P Brand1 field

has 40 variations per P Category value for a selectivity of
1

1000
each. The hierarchies in Customer and Supplier are

C City → C Nation → C Region and S City → S Nation
→ S Region, respectively. Date features two natural hi-
erarchies D DayNumInMonth → D Month → D Year and
D DayNumInWeek → D Week → D Year .

2.2 SSB Queries
Instead of TPC-H’s 22 queries, O’Neil et al. propose four

flights of queries that each consist of three to four queries
with varying selectivity [11]. Each flight consists of a se-
quence of queries that someone working with data warehouse
system would ask, e.g., for a drill down.

Query Flight 1 (Q1.1, Q1.2 and Q1.3) is based on TPC-
H’s Query 6 (see Listing 1 for the SQL code of Q1.1). It
performs a single join between the Lineorder table and the
small Date dimension table. Selectivity predicates are set
on D Year, Lo Discount and Lo Quantity. Flight 1 simu-
lates a drill down into the Date dimension. From one query
of the flight to the next join selectivity is reduced by re-
fining the predicate on the Date component. Q1.1’s Date
range is one year, Q1.2 selects data within a range of one
month and Q1.3’s refines this further by selecting data of one
week. Q1.3 further changes the predicate on Lo Quantity
from less than n to between n and m.

SELECT SUM(lo_extendedprice*lo_discount) AS revenue
FROM lineorder , date

WHERE lo_orderdate = d_datekey
AND d_year = 1993
AND lo_discount BETWEEN 1 AND 3
AND lo_quantity < 25;

Listing 1: Query Q1.1 of SSB

In order to measure the effect of data skew on query ex-
ecution times of queries in Flight 1, we propose data skew
in (i) Lo Orderdate, (ii) Lo Discount and (iii) Lo Quantity.
Data skew in the Lo Orderdate column is realistic as retail
sales are low and flat in the summer, but pick up steeply after
Thanksgiving to top in December (see Figure 1). Data Skew
in Lo Discount and Lo Quantity are also realistic, which can
be categorized as single column skew of single tables because
these columns are statistically independent.

Queries in Flight 2 join the Lineorder, Date, Part and
Supplier tables (see Listing 2 for Q2.1). They aggregate and
sort data on Year and Brand. Selectivity is modified using
predicates on P Category, S Region and P Brand. That is,
they use the P Brand1 → P Category → P Mfgr hierarchy
in the Part table.

SELECT SUM(lo_revenue), d_year , p_brand1
FROM lineorder , date , part , supplier

WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_category = ’MFGR #12’
AND s_region = ’AMERICA ’

GROUP BY d_year , p_brand1
ORDER BY d_year , p_brand1;

Listing 2: Query Q2.1 of SSB

In addition to data skew in Lo Orderdate, as proposed for
Flight 1, for Flight 2 we propose data skew in P Category
and S Region, which is realistic as not every manufacturer
produces the same number of parts and not all suppliers are
distributed uniformly in all regions.
Flight 3 aggregates revenue data by Customer and Sup-

plier nations as well as the years in which orders were placed.
Starting from a specific customer, supplier, region and date,
Flight 3 drills down into specific cities and years. It uses
the City → Nation → Region hierarchies in Customer and
Supplier. Listing 3 shows the third query in Flight 3. Only
flights 3 and 4 add disjunctive predicates.

SELECT c_city , s_city , d_year ,
SUM(lo_revenue) AS revenue

FROM customer , lineorder , supplier , date
WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey
AND lo_orderdate = d_datekey
AND (c_city_skewed=’City1’
OR c_city_skewed=’City2’)

AND (s_city_skewed=’City2’
OR s_city_skewed=’City3’)

AND d_year >= 1992
AND d_year <= 1997

GROUP BY c_city , s_city , d_year
ORDER BY d_year ASC , revenue DESC;

Listing 3: Query Q3.3 of SSB

As this flight eventually drills down into one month, data
skew in the Lo Orderdate and the region columns makes
sense for this query as well.
Flight 4 is the most complex one, as it joins all tables.

Query Q4.1 can be seen in Listing 4. It drills down into re-
gion and manufacturer, using both the P Brand → P Cate-
gory → P Mfgr and the C City → C Nation → C Region
hierarchies in Supplier. Hence, data skew in the Customer,
Part and Supplier hierarchies makes sense.

SELECT d_year , c_nation ,
SUM(lo_revenue - lo_supplycost) AS profit

FROM date , customer , supplier , part , lineorder
WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey
AND lo_partkey = p_partkey
AND lo_orderdate = d_datekey
AND c_region = ’AMERICA ’
AND s_region = ’AMERICA ’
AND (p_mfgr = ’MFGR#1’ OR p_mfgr = ’MFGR#2’)

GROUP BY d_year , c_nation
ORDER BY d_year , c_nation;

Listing 4: Query Q4.1 of SSB

The above query analysis shows that implementing data
skew in the single columns Lo Discount and Lo Quantity, as
well as in the dimension hierarchies P Brand → P Category
→ of Part, C City → C Nation → C Region of Customer,
and C City→ C Nation→ C Region of Supplier is sufficient
to vary the selectivity of all queries and demonstrate the
affects of data skew to query performance.

3. SSB IMPLEMENTATION IN PDGF
The Parallel Data Generation Framework (PDGF) is a

generic data generator that was implemented at the Univer-
sity of Passau [15]. It was mainly built to generate relational

data for database benchmarking purposes. However, it is
able to create any kind of data that can be expressed in a
relational model. PDGF exploits the parallelism in xorshift

random number generators (PRNG) to generate complex
dependencies by re-calculating dependent row data (a.k.a.
field values) rather than storing them, which would greatly
limit the maximum data size and parallelism that can be
generated on a given system (for details on xorshift gen-
erators see, e.g., [9]). The underlying approach is straight
forward: the random number generator is a hash function,
which can generate any random number out of a sequence
in O(1). With this approach every random number in the
sequence of the PRNG can be computed independently. Us-
ing the random numbers, generated by the PRNG, arbi-
trary values are generated using mapping functions, dictio-
nary lookups and such. Quickly finding the right random
numbers is possible by using a hierarchical seeding strategy.
Furthermore, by using bijective permutations it is possible
to generate consistent updates of the data where values may
be inserted, changed and deleted [6].

3.1 Data Generation in PDGF
Although pseudo random number generation is in general

deterministic, i.e., a repeated execution of the data gener-
ator produces the identical results, most data generation
approaches do not allow a repeated generation of an indi-
vidual field value without generating data for all preceding
rows. This is due to dependencies within the generation.
For example, if the generation of a timestamp in a certain
row of a table is dependent on the timestamp in the previ-
ous row (e.g., tn = tn−1+ random number of seconds) all
previous timestamps have to be computed recursively in or-
der to re-calculate each timestamp. With this approach it is
impossible to generate data that references such timestamps
without reading the data after its generation. For large data
sets and distributed data generation, re-reading data is not
feasible. To circumvent these kinds of problems, PDGF uses
a repeatable data generation methodology. All field values
are generated using functions that map random numbers (in-
put) to row data, the field value generators. They have to
follow the requirement, that the same input number always
creates the same output value and that the value genera-
tor is stateless. That is, each field value generator needs to
take a seed value as input parameter. If field value genera-
tors follow this requirement the challenge of repeatable data
generation can be reduced to repeatable random number
generation. We achieve this by using the seeding hierarchy
depicted in Figure 3. The hierarchy assigns a virtual identi-
fier to each field in the database. The identifier is mapped
to a random number by iteratively reseeding random num-
ber generators (schema → table → column → update →
row). It has to be noted that most of these reseeding op-
erations only have to be done during initialization. Output
of the seeding hierarchy is a deterministically seeded ran-
dom number generator that is used to generate the required
input numbers for the generation of the field value. This
is especially important if complex field values are generated,
such as Markov chain generated pseudo text, which does not
consume the same number of random values for each field
value.

PDGF can be configured using two XML files: the Schema

Configuration File describes the underlying relational sche-
ma of the data, the Generation Configuration File defines

��������

	�
 ��
�������� ���� ������� �

��������	

�

�

���� ����

����� ��	���� ����

���������	���� ����

	��������������

�

�����������	���� ��

Figure 3: PDGF’s Seeding Strategy

how the data is formatted. The schema configuration has
a similar structure as the SQL definition of a relational
schema, it defines a set of tables which consist of fields. Each
field has name, size, data type and generation specification.
Listing 5 shows the first two fields of the Supplier table and
the definition of dependencies in PDGF. For instance, the
S Name field is defined as the string “Supplier”, concate-
nated with the value of the field S Suppkey and padded to 9
places. PDGF automatically resolves this dependency if the
OtherFieldValueGenerator is used. The additional transfor-
mations can be specified with meta-generators that change
the values generated by subsequent generators. In the ex-
ample, the padding is done by a PaddingGenerator and the
prefix is added with another generator.

<table name="SUPPLIER">
<size>${S}</size>

<field name="S_SUPPKEY" size="" type="NUMERIC"
primary="true" unique="true">

<gen_IdGenerator />
</field>

<field name="S_NAME" size="25" type="VARCHAR">
<gen_PrePostfixGenerator>

<gen_PaddingGenerator >
<gen_OtherFieldValueGenerator >

<reference field="S_SUPPKEY" />
</gen_OtherFieldValueGenerator >
<character >0</character >
<padToLeft >true</padToLeft >
<size>9</size>

</gen_PaddingGenerator >
<prefix>Supplier </prefix>

</gen_PrePostfixGenerator>
</field>

[..]

Listing 5: Excerpt of the Supplier Table Definition

One peculiarity of the SSB schema is the definition of the
Lineorder table. It resembles the denormalized Lineitem
↔ Order relationship of TPC-H. One row in the Order ta-
ble corresponds to n ∈ [1, 7] rows in the Lineitem table.
In its denormalized version each row of the Lineorder ta-
ble contains the individual price of the item as well as the
total price of the order. Hence, there is a linear depen-
dency between Lineitem and Orders. This is resolved in
PDGF in the following way: Instead of treating each line
item as a single row we generate all line items of a par-
ticular order in one row. This is similar to the genera-
tion of Lineorder in the original generator of SSB and the
generation of Lineitem and Order in TPC-H, respectively.
The PDGF implementation of Lineorder ist shown in List-
ing 6. The field Lo Number Of Lineitems determines the
number of lineitems within a certain order. This field is
not printed. All order related values, e.g., Lo Orderkey, are

specified once, while values that are specific to a lineitem,
e.g., Lo Linenumber are specified for each lineitem.

<table name="LINEORDER">
<size>${L}</size>

<field name="LO_ORDERKEY" size=""
type="NUMERIC">
<gen_FormulaGenerator >

<formula >
(gc.getID() / 8 * 32) +

(gc.getID() % 8)
</formula >
<decimalPlaces >0</decimalPlaces >

</gen_FormulaGenerator >
</field>

<field name="LO_NUMBER_OF_LINEITEMS" size=""
type="NUMERIC">
<gen_LongGenerator>

<min>1</min>
<max>7</max>

</gen_LongGenerator>
</field>

<field name="LO_LINENUMBER_1" size=""
type="NUMERIC">
<gen_StaticValueGenerator>

<value>1</value>
</gen_StaticValueGenerator>

</field>
[..]

Listing 6: Excerpt of the Lineorder Table Definition

The output of Lineorder data as multiple rows is specified
in the generation configuration file, which describes the out-
put location and format of the output data. Furthermore,
the generation configuration file allows for specifying arbi-
trary post-processing operations. In Listing 7, an excerpt
of the generation specification for Lineorder is shown. The
value of the field in Column 2, Lo Number Of Lineitems,
determines the number of rows that have to be generated.

<table name="LINEORDER" exclude="false">
<output name="CompiledTemplateOutput">
<fileTemplate >outputDir + table.getName ()

+ fileEnding </ fileTemplate >
<outputDir >output/</outputDir >
<fileEnding >.tbl </fileEnding >
<charset >UTF -8</charset >
<sortByRowID >true </ sortByRowID >
<template ><!--

int noRows
=(fields [1]. getPlainValue ()).intValue ();

for (int i = 0; i < noRows; i++) {
buffer.append(fields [0]); // LO_ORDERKEY

buffer.append(’|’).append(fields [2+i]);
[..]

Listing 7: Excerpt of the Generation Definition for
Lineorder

Post-processing in the generation configuration, as shown
in Listing 7, is only necessary if the relational definition in
the schema definition file is not identical to the format on
disk.

Another example in the SSB schema is the address infor-
mation. Because the dimension tables are denormalized the
Region and Nation fields have to be generated consistently
(e.g., France should always be in Europe). We implemented
this by specifying a virtual table Region Nation, which is

referenced by other tables and is not actually generated.
This way, we ensure consistency in the data generation be-
cause the virtual table Region Nation contains only valid
Region-Nation combinations.

3.2 Query Generation in PDGF
In addition to the data generation, we also designed and

implemented a query generator in PDGF, which converts
the SSB query templates into valid SQL. In order to gener-
ate a large query set, many benchmarks including TPC-H,
TPC-DS and SSB define query templates that can be con-
verted into valid SQL queries. For TPC-H and TPC-DS this
is done by tools that substitute tagged portions of queries
with valid values, such as selectivity predicates, aggregation
functions or columns (qgen, DSQgen) [14].In order for such
tools to generate a valid and predictable workload they need
to have knowledge about the schema and data set. Oth-
erwise the chosen values, e.g., selectivity predicates might
not qualify the desired number of rows. TPC-H’s qgen and
its counterpart for SSB generate queries by selecting ran-
dom values within the possible ranges of the data. The
following shows the definition of the supplier name ranges
as specified in the TPC-H specification: S_NAME text ap-

pended with digit ["Supplier", S_SUPPKEY]

TPC-H’s and SSB’s qgen implementations have major
drawbacks: (i) the parameter ranges for each substitution
parameter are hard-coded into a c-program, (ii) scale factor
dependent substitution parameter handing is difficult, and
(iii) this approach only works on uniformly distributed data.
Instead of hard-coding valid parameter ranges for each

query, we use PDGF’s post-processing functionality to im-
plement our query generator for SSB. For each query we
define one table that is populated with all valid parameters
of that query. We refer to these tables as parameter tables.
The key benefit of our approach is that query parameters
are generated from existing values in the data set. Using
our approach we generate queries by selecting random field
values from the data set, i.e., field values that actually exist
in the generated data. This is a more flexible approach as it
does not statically define the data range.
In Listing 8, an excerpt for the table specifying the pa-

rameters for Query Q1.1 can be seen.

<table name="QUERYPARAMETERS_Q1 .1">
<size>13 * ${ QUERY_ROUNDS}</size>
<field name="YEAR" size="4" type="NUMERIC">

<gen_LongGenerator>
<min>1993</min>
<max>1997</max>

</gen_LongGenerator>
</field>

[..]
</table>

Listing 8: Schema Definition of the Parameter Table
for Query Q1.1 (excerpt)

The query template itself is specified in the generation
configuration. For Query Q1.1 this can be seen in Listing 9.
As can be seen in the listing, the template is embedded in a
XML comment in Java-style String format. This format will
be compiled into a regular Java binary at runtime. Future
versions of PDGF will include a new output plugin that is
able to read the template from files and directly generate
this Java representation.

<table name="QUERY_PARAMETERS" exclude="false" >
<output name="CompiledTemplateOutput" >

[..]
<template ><!--

int y = (fields [0]. getPlainValue ()).intValue ();
int d = (fields [1]. getPlainValue ()).intValue ();
int q = (fields [2]. getPlainValue ()).intValue ();
String n = pdgf.util.Constants.DEFAULT_LINESEPARATOR;
buffer.append("-- Q1.1" + n);
buffer.append("select sum(lo_extendedprice *");
buffer.append(" lo_discount) as revenue" + n);
buffer.append("from lineorder , date" + n);
buffer.append("where lo_orderdate = d_datekey" + n);
buffer.append("and d_year = " + y + n);
buffer.append("and lo_disc between " + (d - 1));
buffer.append(" and " + (d + 1) + n);
buffer.append("and lo_quantity < " + q + ";" + n);
--></template >
</output >

</table >

Listing 9: Excerpt of the Template Specification for
Query Q1.1

4. STAR SCHEMA BENCHMARK VARIA-

TIONS
Our PDGF implementation of the original Star Schema

Benchmark enables easy alterations to the schema and the
data generation as well as the query generation. Columns
can be easily added or data distributions changed and queries
modified and added. This section discusses different ap-
proaches of introducing data skew into the original SSB and
the reasoning why some of these changes work and some do
not. The variations are based on the findings of Section 2.2
and can be subdivided into four categories:

• Skew in foreign key relations

• Skew in a fact table measures

• Skew in a single dimension hierarchies

• Skew in multiple dimension hierarchies

We discuss each of the proposed data skews below and
conduct experiments to show their effects on query elapsed
times. Each experiment focuses on one of the above pro-
posed data skews by running queries on the original uniform
and on the proposed skewed data sets. For each experiment
we choose a representative query template, generate queries
for all possible substitution parameters and run them in
three modes: (i) Index forced: The query optimizer is forced
to use indexes; (ii) Index disabled: The query optimizer is
not allowed to use indexes, forcing the system to perform full
table scans; and (iii) Index automatic: The query optimizer
is free to utilize indexes.

We do not claim that the above three modes are an ex-
haustive list to analyze the effects of data skew on query
elapsed time. However, indexes are widely used to improve
query performance and index technology is available on most
relational database systems (RDBMS) today. With the three
modes, we demonstrate the ability/inability of the query op-
timizer to choose the best performing plan for each of the
substitution parameters and any related side effects, such
as large scans and large intermediate result sets. We fur-
ther demonstrate the difference in query processing time for
uniform and skewed data under equal conditions.

Our experiments were conducted on a publicly available
RDBMS as a proof of concept. The findings are RDBMS
agnostic as the technology used is available in all of to-
day’s RDBMS implementations. Thus, the following ex-
periments are not conducting a performance analysis of a
specific RDBMS. They are included to show the effects of
the proposed distribution changes, thereby underlining the
importance of data skew in database benchmarks. The dis-
played elapsed times are averages from five consecutive runs
of the same query.

4.1 Skew in Foreign Key Relations
The characteristics of real life data when loaded into a star

schema result in skew of foreign key relations, i.e., fact table
foreign keys. For instance, popular items are sold more often
than unpopular, some customer purchase more often than
others and sales do not occur uniform throughout the year,
but tend to be highly skewed towards the holiday season
(see also Figure 1).
These characteristics of real life data result in potentially

highly skewed foreign key distributions, which impact the
way joins are executed, data structures are allocated and
plan decisions are made by query optimizers. Implementing
skew in foreign keys is easy in PDGF. However, there are
drawbacks to adding this kind of skew. Due to surrogate
keys being used in star schemas, distributions in foreign keys
cannot be correlated to the values in the dimensions that
they reference, e.g., values in hierarchy fields. As a result
skew in foreign keys does not necessarily translate into skew
in the join to dimensions. The high selectivity in dimension
fields evens out the skew in the foreign keys.
As an example consider Query Q2.1 in Listing 2. Even

if we introduce skew into the foreign keys to the Part ta-
ble, i.e., Lo Partkey, many Lineorder tuples will still match
the same P Mfgr value. Since there are only 5 different
P Mfgr values, the resulting selectivities per P Mfgr value
will be almost uniformly distributed. The same is true for
the P Category and P Brand1 selectivities. For this reason,
we do not introduce skew in foreign key references.
In the original SSB the foreign keys, Lo Custkey, Lo Part-

key, Lo Suppkey and Lo Orderdate are distributed uniform-
ly. E.g., the keys in Lo Orderdate have a coefficient of vari-
ation of 0.0044. This allows us to introduce skew into the
values of the dimensions themselves. Due to the uniform
distributions of the foreign keys the skew of dimension val-
ues directly translates into skew of the foreign keys. This is
a better way to control the skew in the cardinality of joins
between the fact table and dimension tables.

4.2 Skew in Fact Table Measures
Lo Quantity is an additive measure of the Lineorder fact

table. It contains natural numbers x ∈ [1, 50]. In the orig-
inal uniform distribution values of Lo Quantity occur with
a likelihood of about 0.02 with a coefficient of variation of
0.000284. We modify the Lo Quantity distribution to skew
quantities towards smaller values in the following way: Let
x ∈ [1, 50] be the values for Lo Quantity, then the likelihood
of x is p(x) = P (X = x) = 0.3

1.3x
. In order to calculate the

number of rows with value x, i.e., r(x), we multiply n by
the table cardinality, n = |Lineorder| : r(x) = n ∗ p(x). This
results in a exponential probability distribution.
In PDGF this kind of distribution can be implemented

very easily by adding a distribution node to the data gen-

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45 50

C
ar

di
na

lit
y

(x
106)

Lo_Quantity

Skewed
Uniform

Figure 4: Lo Quantity Distribution

 0
 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Lo_Quantity

Index Forced
Index Disabled

Index Automatic

Figure 5: Elapse Times of Query Q1.1 with Uni-
formly Distributed Lo Quantity

erator specification. This can be seen in Listing 10. The
exponential distribution is parameterized with λ = 0.26235,
which results in the desired distribution.

<field name="LO_QUANTITY" size="2" type="NUMERIC">
<gen_LongGenerator>

<min>1</min>
<max>50</max>
<distribution name="Exponential"

lambda="0.26235" />
</gen_LongGenerator>

</field>

Listing 10: Schema Definition of Lo Quantity

Figure 4 shows the uniform (original) and skewed dis-
tributions of Lo Quantity. The x-axis plots the values for
Lo Quantity ranging from 1 to 50 and the y-axis plots the
number of rows with those values. The cardinalities in the
uniform case for scale factor 100 are constant at around 12
Million with a coefficient of variation of 0.00000557, while
the cardinalities in the skewed case start at 140 Million
and decrease steeply to 336 with a coefficient of variation
of 0.047465541.

Using the skewed and uniform distributions for Lo Quan-
tity we run Q1.1 and Q1.2 of Flight 1, which contain selectiv-
ity predicates on Lo Quantity. Query Q1.1 contains the“less
than” predicate lo_quantity < x, while Query Q1.2 contains
the “between” predicate lo_quantity BETWEEN x AND x+9. We
vary the selectivity predicates on Lo Quantity in the fol-
lowing way: for Query Q1.1 x ∈ [2, 51] and Query Q1.2
x ∈ [1, 41]. To take advantage of the extreme distribution of
Lo Quantity, we create an index on Lo Quantity.

Figures 5 and 6 show the elapsed times of Query Q1.1 us-

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Lo_Quantity

Index Forced
Index Disabled

Index Automatic

Figure 6: Elapse Times of Query Q1.1 with Skewed
Distributed Lo Quantity

ing the three modes explained above and varying the predi-
cate lo_quantity < x, x ∈ [2, 51] on both the uniform and
skewed data sets. The solid line in Figure 5 shows the
elapsed times of index driven queries. The elapsed times
increase linearly with increased values of Lo quantity. It
starts with about 0.4s at x = 2 and increases linearly to 4.8s
at x = 51. This is not surprising as the advantage of the
index diminishes with increased values for x, i.e., the num-
ber of rows qualifying for the index driven join increases-
linearly with increased values of x. The dashed line shows
the elapsed time of the non-index driven join queries. This
line is flat at about 3s. This is also not surprising as the non-
index driven join queries have to scan the entire Lineorder
table regardless of substitution parameters. That is, the in-
dex driven queries outperform the non-index driven queries
until x = 31. The dotted line shows the elapsed time of
queries when the query optimizer is free to choose the best
execution plan. This line shows that the query optimizer
switches from an index driven join to an non-index driven
join at x = 12. This is suboptimal as the real cutoff of index
driven joins is at about x = 31. That is the query optimizer
switches too early from an index driven join to a non-index
driven join.
Figure 6 repeats the same experiments on skewed data.

As in the uniform case the elapsed times of the index driven
queries, as indicated by the solid line, and the elapsed times
of the non-index driven queries, as indicated by the dashed
line follow the skewed Lo Quantity distribution. Due to the
extreme skew in Lo Quantity, the index driven queries out-
perform the non-index driven queries only for values x < 5.
The dotted line shows the elapsed time of queries when the
query optimizer is free to choose the best execution plan.
It shows that the optimizer switches from an index driven
plan to a non-index driven plan at the same value for x as
in the uniform experiment, namely at x = 11. However, this
switch is suboptimal. It should have occurred earlier, i.e.,
at x = 5.
These experiments show that the optimizer factors the

selectivity of certain predicates in the query planning. How-
ever, the fact that the switch in the query plan from in-
dex driven to non-index driven occurs at the same predicate
parameter for skewed and uniform data suggests that the
optimizer does not consider the data distribution for this
decision.
Figures 7 and 8 show the elapsed times of Query Q1.2

on uniform and skewed data in the above described three

 1.2
 1.4
 1.6
 1.8
 2

 2.2
 2.4
 2.6
 2.8
 3

 0 5 10 15 20 25 30 35 40

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Lower Range for Lo_Quantity Range

Index forced
Index disabled

Index automatic

Figure 7: Effect of skewed Lo Quantity on Query
Q1.2 elapsed times

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Lower Bound for Lo_Quantity Range

Index forced
Index disabled

Index automatic

Figure 8: Effect of skewed Lo Quantity on Query
Q1.2 elapsed times

optimizer modes. Similarly, as in the experiments for Query
Q1.1, we vary x ∈ [1, 41] in lo_quantity between x and x+9.

Figure 7 shows that the elapsed times of Query Q1.2 stay
constant for each of the three modes regardless of the sub-
stitution parameter x. On average the index driven queries
execute in 2.63s with a coefficient of variation of 0.024, while
the non-index driven queries and the queries chosen in the
automatic mode execute on average in 1.42s with a coeffi-
cient of variation of 0.021. The index driven queries outper-
form the non-index driven queries by 46% and the lines for
index forced and index automatic overlap.

Figure 8 shows that in the skewed case Query Q1.2 ben-
efits from non-index driven joins in cases of high selectivity.
The elapsed times of the non-index driven queries are ag-
nostic to the substitution parameter x. With an average of
2.69s at a coefficient of variation of 0.038, which is similar to
the uniform case, they outperform the index driven queries
for x < 10. The index driven queries follow the distribu-
tion for Lo quantity (see Figure 4), i.e., they monotonously
decrease with increasing x. For x >= 10 the index driven
queries outperform the non-index driven queries. The line
showing the elapsed times of queries in the automatic mode
indicates that the system makes the right choice switching
from non-index driven queries to index driven queries at
x = 10.

4.3 Skew in Single Dimension Hierarchies
Selectivity in many of the original SSB queries is con-

trolled by predicates on hierarchy columns. Each dimen-
sion table defines one three-column hierarchy. Each col-
umn of a hierarchy defines a different range of values. Col-
umn cardinality increases as individual queries of flights

 0

 10

 20

 30

 40

 50

 60

 70

55
 44
 33
 23
 31
 11

C
ar

di
na

lit
y

(x
104)

Category Number

Skewed
Uniform

Figure 9: P Category Distribution Uniform and
Skewed

drill down into hierarchies. For example, the Part table
defines the following hierarchy: P Brand → P Category →
P Mfgr. Values for these hierarchy columns are generated
in the following way: Values in P Mfgr are used as pre-
fixes in P Category whose values again serve as prefixes in
P Brand. While P Mfgr contains five different values m ∈
{MFGR#1, ...,MFGR#5}, P Category contains 25 differ-
ent values c ∈ {MFGR#11, ...,MFGR#55} and P Brand
contains 1000 values b ∈ {MFGR#1101, ...,MFGR#5540}.
By varying the projection predicates in queries for these
three columns, the join selectivity can be varied as well.
Consider Query Q2.1 in Listing 2; due to the hierarchy and
the uniform distributions in all values and references one
can easily see that the selectivity on Part and thus also on
Lineorder is 1

5
of the size of the tables. By changing the

restriction to Category, e.g., p_category = ’MFGR#22’, the join
selectivity can be reduced to 1

25
. The set ratio between the

number of rows qualifying a specific substitution parameter
is exploited in the query flights.
By introducing skew in these columns the above property

may be lost. However, if we control the skew and are able
to estimate the frequency of each value, the selectivity cal-
culations are still possible. Therefore, we set a predefined
probability for each value in the part hierarchy. For the
numbers in Mfgr and Category we use the following prob-
abilities: 1 70%, 2 20%, 3 6%, 4 3%, and 5 1%. For in-
stance, the value “Mfgr#1” appears with a probability of
70% and the category “Mfgr#11” occurs with a probability
of 70% ∗ 70% = 49%. The values where chosen to have one
range that has the same probability as in the uniform case
(i.e., “MFGR#2” and “MFGR#22”). This makes it possible
to specify queries with the same selectivity for the skewed
and uniform data. SSB Query Q1.3 includes a range selec-
tion on Brand1. Therefore, we define ranges with the same
probability in column Brand1. The selectivities in Brand1
are: 1-10 70%, 11-20 25%, 21-30 4.5%, and 31-40 0.5%. Thus
brands in the range of “MFRG#2211”-“MFRG#2220” have
the same probability as in the uniform case.
Figure 9 displays the uniform and skewed distribution of

values in the P Category column. The cardinalities of the
uniform distribution stay at around 4% with a coefficient of
variation of 0.0044. The cardinalities in the skewed distri-
bution vary between 0.01% and 48.36% with a coefficient of
variation of 2.5028.
Skew in P Category can be implemented in PDGF as de-

scribed in Listing 11. It shows the definition of the P Mfgr
field. Each value consists of two parts, the prefix “MFGR#”

 4
 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

55
 44
 33
 23
 31
 11

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Category Number

Index Forced
Index Disabled

Index Automatic

Figure 10: Elapsed Times of Query Q2.1 with Uni-
formly Distributed P Category

 0

 5

 10

 15

 20

 25

55
 44
 33
 23
 31
 11

Q

ue
ry

 E
la

ps
ed

 T
im

e
[s

]
Category Number

Index Forced
Index Disabled

Index Automatic

Figure 11: Elapsed Times of Query Q2.1 with
Skewed Distributed P Category

and a number between one and five. The probability for each
number is explicitly defined as specified above. The defini-
tion of the fields P Category and P Brand1 is implemented
in the same way, by explicitly giving the probabilities.

<field name="P_MFGR" size="6" type="VARCHAR">
<gen_PrePostfixGenerator>
<gen_ProbabilityGenerator>
<probability value="0.70">
<gen_StaticValueGenerator>
<value>1</value>

</gen_StaticValueGenerator>
</probability >
<probability value="0.20">
<gen_StaticValueGenerator>
<value>2</value>

</gen_StaticValueGenerator>
</probability >
[..]

</gen_ProbabilityGenerator>
<prefix>MFGR#</prefix>

</gen_PrePostfixGenerator>
</field>

Listing 11: Definition of Skew in P Mfgr Field

Query Q2.1, as defined in Listing 2, can be used to demon-
strate the effects of the skewed distribution on query execu-
tion times. In Figure 10, the execution times of all pos-
sible values of P Category are shown for the uniform, i.e.,
original distribution, and in Figure 11, they are shown for
the skewed distribution. As can be seen in the graph, the
execution times for the queries in the uniform case are al-
most constant as expected, because the query predicate is
an “equal” predicate in Q2.1. Interestingly, the query op-

timizer consistently chooses the wrong query plan, i.e., an
index-driven plan. In the skewed case, the execution times
are increasing with the selectivity for the index driven query
plan and constant for the plan without index. As in previ-
ous experiments, the query optimizer is aware of the skew
in the selectivity of P Category as can be seen at the auto-
matic plan in the skewed case. However, the query optimizer
switches from an index to non-index plan too early, thus sig-
nificantly increasing the query elapsed time. This behavior
can only be observed on the skewed data set. With the regu-
lar data set the source of the less efficient query plan cannot
be determined.

4.4 Skew in Multiple Dimension Hierarchies
This section discusses the introduction of data skew in

multiple dimensions and its effect on query elapsed times.
Similar to the data skew in the P Brand1 → P Category →
P Mfgr hierarchy of the Part table, data skew can be imple-
mented in the City → Nation → Region hierarchies of the
Supplier and Customer tables. Having five regions in each
table (Supplier, Customer) results in a selectivity of 1

5
in the

uniform case. Each region contains 5 nations, each with a
selectivity of 1

25
. Each nation contains 10 cities for a total se-

lectivity of 1
250

. Queries in flights 3 and 4 compare customer
with supplier using various levels in the above hierarchies.
For our experiments, we modify S City and C City to

follow an exponential distribution. For simplicity, we as-
sign each city of the Supplier and Customer tables a unique
number: cs ∈ [1, 250] for Supplier and cc ∈ [1, 250] for
Customer. The likelihoods of Supplier and Customer cities
are then defined as p(cs) = P (C = cs) = 0.0309

1.0309cs
and

p(cc) = P (C = cc) = 0.04
1.04cc

. In order to calculate the
number of rows r(cs) with value cs and the number of rows
r(cc) with values cc, we multiply the likelihoods by the ta-
ble cardinality ns = |Supplier| : r(cs) = ns ∗ p(cs) and
nc = |Customer| : r(cc) = nc ∗ p(cc). This results in expo-
nential probability distributions for Supplier and Customer
cities as depicted in Figure 12. The cardinality of the Cus-
tomer table is 15 times larger than the cardinality of the Sup-
plier table. In order to plot graphs for S City and C City
in one graph, we normalized both by dividing the cardi-
nality of each city by the cardinality of the largest city:
max|SupplierCity| = 6799, max|CustomerCity| = 121135.
As depicted in Figure 12 both distributions are similar.
Query Q3.3 (see Listing 3) contains selectivity predicates

on Date(D Year), Supplier(S City) and Customer(C City).
The predicates on S City and C City are disjunctions. We
use the same city for each part of the disjunction. Hence,
we have two substitution parameters (city1, city2) for Q3.3,
where city1 is used as a projection of Supplier and city2
is used as a projection of Customer. Because there is no
correlation between the city distributions in Supplier and
Customer and the Date table, not all city pairs are guar-
anteed to occur for every year. Hence, before running our
experiments we compute the valid Supplier and Customer
city pairs. It turns out that out of the total combination of
2502 = 62500 city pairs only 1569 occur within D_Year=1997

(default for Query Q3.3) in the original SSB data. To re-
duce the number of experiments we select a subset of 156,
i.e., every 10th, city pair. Figure 13 shows the join cardi-
nalities |Cc city=city1 ✶ L ✶ Ss city=city2 ✶ Dd year=1997| of
the subset of valid Supplier and Customer city pairs that
we use in subsequent experiments. The graph shows that

 0

 0.2

 0.4

 0.6

 0.8

 1

ARGENTINA1 IRAQ 4 UNITED ST5

N
or

m
al

iz
ed

 C
ar

di
na

lit
y

Cities

S_CITY
C_CITY

Figure 12: C City and S City Skewed Distributions

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100 120 140 160

Jo
in

 C
ar

di
na

lit
y

Selected City Pairs

Uniform
Skewed

Figure 13: Query Q3.3 Join Cardinalities of the
Skewed Distributions

the skewed distributions of cities in Supplier and Customer
translate into a similar distribution of the join cardinalities.
They start very high at around 300k and decrease negative
exponentially to single digit values for high city pairs. At
city pair 41 the two lines cross, i.e., before city pair 41 the
join cardinalities of the skewed case are much higher com-
pared to the uniform case. After that skewed cardinalities
are much lower compared to the uniform cardinalities.

In PDGF the above distribution can be implemented very
easily by adding a distribution node to the data generator
specification. For the city fields the exponential distribution
is implemented as in the Lo Quantity field as shown above
in Listing 10. In this experiment, we are mainly interested
in the effect of multiple skewed dimensions and, therefore,
we only skew the most selective attribute, which is S City
and C City, respectively. As discussed in Section 3.1, in our
PDGF implementation nation and region are references to
a virtual table, as is the nation prefix of the City attribute.
The definition of the S City attribute can be can be seen
in Listing 12. A value of S City is made from a prefix that
is a padded or truncated version of a Nation value (strings
longer than 9 characters are truncated, shorter strings are
padded) and a number between 0 and 9. In order to gen-
erate a skewed output, the reference to Nation Region can
be skewed, as can the generation of the number that is con-
catenated with the prefix. In our PDGF implementation
for Supplier we only insert a skew in the reference to Na-
tion Region, while for Customer, we additionally add a skew
in the number generation.

Figures 14 and 15 show the elapsed times of Q3.3 on uni-
form and skewed distributions of S City and C City. Query
Q3.3 is more complicated compared to the queries used in
previous experiments as it joins four tables: Lineorder, Sup-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Selected City Pairs

Index Forced
Index Disabled

Index Automatic

Figure 14: Elapsed Times of Query Q3.3 with Uni-
form C City and S City

<field name="S_CITY" size="10" type="VARCHAR">
<gen_SequentialGenerator concatenateResults="true">

<gen_PaddingGenerator >
<gen_DefaultReferenceGenerator id="S_CITY_id">

<reference table="NATION -REGION"
field="NATION" />

</gen_DefaultReferenceGenerator>
<character > </character >
<padToLeft >false</padToLeft >
<size>9</size>

</gen_PaddingGenerator >
<gen_LongGenerator>

<min>0</min>
<max>9</max>

</gen_LongGenerator>
</gen_SequentialGenerator>

</field>

Listing 12: Definition of S City in the Supplier table

plier, Customer and Date. Due to the increased complex-
ity, the choices for indexes and query plans for Query Q3.3.
are much larger compared to those in previous experiments.
Hence, the index driven join forces the system to use a query
plan that does not necessarily coincides with the query plan
chosen by the optimizer in automatic mode.
Figure 14 shows the elapsed times for all three modes on a

uniform data set. Each line shows a constant query elapsed
time regardless of the city pair chosen. This is not surprising
as the cardinalities of at which each city pair occurs in the
database is constant (see Figure 12. The non-index driven
queries have the longest elapsed times while the automatic
queries have the shortest elapsed times. The index forced
queries execute slightly longer than the index driven queries.
Figure 15 shows the elapsed times for all three modes on

the skewed data set. The graph reveals a couple of very
interesting characteristics of the system. The elapsed times
of the non-index driven queries, dashed line, is more or less
constant at about 7s. Queries using the first 20 city pairs,
which result in very high join cardinalities (50k to 300k)
show slightly higher elapsed times (up to 9s). This is due
to the larger intermediate result set at these high join cardi-
nalities. Contrary, the lines for index forced and index au-
tomatic plans show a steep decrease in elapsed time starting
at city pair 30 for the automatic plan and 34 for the index
forced plan. The steep decrease is due to the steep decrease
in the join cardinality. That is the index driven queries are
able to take advantage of the index to filter out most of
the rows to beat the non-index driven queries. Again, this
is due to a sub-optimal query plan that was forced in the

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

Q
ue

ry
 E

la
ps

ed
 T

im
e

[s
]

Selected City Pairs

Index Forced
Index Disabled

Index Automatic

Figure 15: Elapsed Times of Query Q3.3 with
Skewed C City and S City

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160
Q

ue
ry

 E
la

ps
ed

 T
im

e
[s

]
Selected City Pairs

Automatic Uniform
Automatic Skewed

Figure 16: Elapsed Times of Query Q3.3 with Uni-
form and Skewed C City and S City using Auto-
matic Plans

index-forced mode. Also, like in the uniform case, the au-
tomatic query outperforms both the index driven and non-
index driven queries for all city pairs.

Figure 16 compares the automatic case for the uniform
and skewed distributions. The queries run on uniform data
execute constantly under 1s, while the queries on skewed
data follow the cardinality distribution as described above.
With a decrease in join cardinality the queries on skewed
data outperform those on uniform data, which is not sur-
prising. However, the cross over point seems to be at city
pair 52. We would have expected the cross over to be closer
to city pair 41, where the join cardinalities of the skewed and
uniform data sets are identical. This shows that the system
has a consistently increased latency for skewed data. This
trend also holds for the index-forced and no-index plans.

5. RELATED WORK
While the importance of data skew in database processing

has been identified and, to some degree, quantified in var-
ious publications, especially in the field of parallel systems
[8, 16], there is no industry standard benchmark that mea-
sures the effect of data skew on query processing. In many
cases, performance of parallel DBMS is adversely affected by
data skew, because it introduces load imbalances, stresses
the creation of internal data structures, and it reveals poor
design decisions in algorithms and query optimizers. Having
realized the above, Crolotte and Ghazal proposed the intro-
duction of data skew into TPC-H similarly to TPC-DS, i.e.,
using comparability zones [5]. As a consequence, queries are

still run with substitution parameters that are chosen from
within a comparability zone with uniform distribution.
[5] discusses two approached how skew can be introduced

into the nation keys of the Customer and Supplier tables.
The first approach scales the numbers of customers and
suppliers who reside in a nation proportional to the actual
population of this nation (e.g., obtained from the US cen-
sus). Although being realistic this approach is not feasible in
the context of TPC-H as the queries would impose different
workloads for different customers. Their second approach,
which is feasible for TPC-H is creating skew with a step func-
tion. The first 13 nations have a small population, while the
remaining 12 nations have a large population. They imple-
ment the above described skew using Teradata SQL syntax
with a random function, i.e., they read the original TPC-H
data and apply a random function for nation keys.
Closer to our approach for introducing data skew in stan-

dard benchmarks is Chaudhuri and Narayasa modified ver-
sion of TPC-D [3]. TPC-D was the precursor of TPC-H. The
two benchmarks share the same schema and data model, but
vary in their workload slightly. Hence, the proposed changes
also apply to TPC-H. Chaudhuri and Narayasa modified
TPC-D/H’s data generator dbgen to support Zipfian dis-
tributed data in all columns. The parameter to the distri-
bution (ρ), which controls the degree of skew in the data,
is given as a parameter to the modified version of dbgen. ρ

can be set to any value larger or equal to 0; ρ = 0 generates
a uniform data whereas ρ = 4 generates a highly-skewed
distribution. In addition they also implemented functional-
ity that allows dbgen to randomly chose ρ values for each
column, thereby creating a “mixed” data distribution.
Their approach differs from Crolotte and Ghazal’s ap-

proach as it does not guarantee workload predictability, which
is a major factor in industry standard benchmarks and in
particular in TPC-H. However, Chaudhuri and Narayasa ap-
proach can be easier implemented as the data generator is
freely available, but it is limited to the Zipf distribution and
cannot be customized on a column per column basis.
Data skew has been addressed to some extend in TPC-

DS. The TPC after realizing that the uniform data distribu-
tions in TPC-D, TPC-H and TPC-R were not challenging
today’s DBMS vouched to implement data skew in its next
decision support benchmark TPC-DS. The TPC opted for
a solution that introduced zones of comparability – essen-
tially flat spots in the data distribution – that can be used to
provide both the variability and the comparability that the
eventual user of the generated data requires. These compa-
rability zones differ in size within the column domain and
in number between column domains.

6. CONCLUSION
In this paper, we presented an extension of the Star Schema

Benchmark that introduces skew in single table columns and
single table hierarchies. Due to the limited extensibility of
the original data generator, we implemented a new data
generator and query generator based on the Parallel Data
Generation Framework. Our extensive experimental analy-
sis shows that the introduction of skew in the data sets can
uncover unpredicted behavior in query processing.
PDGF is continuously extended and improved. A recent

extension was presented in [6]. It allows for the efficient
generation of consistent update data. This enables PDGF
to generate more realistic updates on the data compared to

TPC-H and SSB. However, we did not explore this option
in the presented work. Information on the current status
of PDGF as well as downloadable versions can be found on
www.paralleldatageneration.org.

For future work, we will explore the possibilities of us-
ing references to the generated data set in query generation.
This will make it possible to introduce skew in the query
workload and thus make it possible to examine the influ-
ence of query caching and other optimizations in a mean-
ingful way. In combination with the deterministic data gen-
eration the reference-based query generation will enable pre-
computation of query results for certain kinds of queries and
thus provide means for verification beyond the capabilities of
current benchmarks. We will combine these and the above
presented parts into a complete benchmark suite that will
make it possible to test the different influences of skew in
separated and combined workloads.

7. REFERENCES
[1] TPC Benchmark H.

http://www.tpc.org/tpch/spec/tpch2.15.0.pdf, 2012.

[2] J. S. Charles Levine. Standard Benchmarks for Database
Systems. http://www.tpc.org/information/sessions/
sigmod/sigmod97.ppt, 1997.

[3] S. Chaudhuri and V. Narasayya. Program for Generating
Skewed Data Distributions for TPC-D. ftp://ftp.
research.microsoft.com/users/viveknar/tpcdskew, 1997.

[4] E. F. Codd. A Relational Model of Data for Large Shared
Data Banks. Communications of the ACM, 13(1):377–387,
1970.

[5] A. Crolotte and A. Ghazal. Introducing Skew into the
TPC-H Benchmark. In TPCTC ’11, pages 137–145, 2011.

[6] M. Frank, M. Poess, and T. Rabl. Efficient Update Data
Generation for DBMS Benchmark. In ICPE ’12, 2012.

[7] R. Kimball and M. Ross. The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling. John Wiley
and Sons, Inc., 2002.

[8] M. S. Lakshmi and P. S. Yu. Effect of Skew on Join
Performance in Parallel Architectures. In DPDS, pages
107–120, 1988.

[9] G. Marsaglia. Xorshift RNGs. Journal Of Statistical
Software, 8(14):1–6, 2003.

[10] R. O. Nambiar and M. Poess. The Making of TPC-DS. In
VLDB ’06, pages 1049–1058, 2006.

[11] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The Star
Schema Benchmark and Augmented Fact Table Indexing.
In TPCTC ’09, pages 237–252, 2009.

[12] M. Poess and C. Floyd. New TPC Benchmarks for Decision
Support and Web Commerce. SIGMOD Record,
29(2000):64–71, 2000.

[13] M. Poess, T. Rabl, M. Frank, and M. Danisch. A PDGF
Implementation for TPC-H. In TPCTC, pages 196–212,
2011.

[14] M. Poess and J. M. Stephens. Generating Thousand
Benchmark Queries in Seconds. In VLDB, pages
1045–1053, 2004.

[15] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A Data
Generator for Cloud-Scale Benchmarking. In TPCTC ’10,
pages 41–56, 2010.

[16] C. B. Walton, A. G. Dale, and R. M. Jenevein. A
Taxonomy and Performance Model of Data Skew Effects in
Parallel Joins. In G. M. Lohman, A. Sernadas, and
R. Camps, editors, VLDB ’91, pages 537–548. Morgan
Kaufmann, 1991.

