Minimum-Delay Overlay Multicast

Kianoosh Mokhtarian and Hans-Arno Jacobsen
Department of Electrical and Computer Engineering
University of Toronto
Toronto, ON, Canada

Abstract—Delivering delay-sensitive data to a group of re- to every other node in the network. Moreover, this approach
ceivers with minimum latency is a fundamental problem for can incur long delays, because a node has a nite-bandwidth
various distributed applications. In this paper, we study multicast -onnection to the network, over which several copies of the
routing with minimum end-to-end delay to the receivers. The .
delay to each receiver in a multicast tree consist of the time same data should be sent. To avoid these problems, nodes
that the data spends in overlay links as well as the latency can be connected through a mesh overlay. Then, source-based
incurred at each overlay node, which has to send out a piece minimum-delay multicast trees can be calculated on demand
of data several times over a nite-capacity network connection. for transmitting the data, which is the problem of our interest
The latter portion of the delay, which is proportional to the in this paper.

degree of nodes in the tree, can be a signi cant portion of the
total delay as we show in the paper. Yet, it is often ignored While the primary goal of typical shortest-path multicast

or only partially addressed by previous multicast algorithms. We Schemes has been to minimize the total link-by-link delay
formulate the actual delay to the receivers in a multicast tree and experienced by packets, we observe that a signi cant portion

consider minimizing the average and the maximum delay in the of the total delay in a multicast scenario is the delay incurred
tree. We show the NP-hardness of these problems and prove that 5t oyerlay nodes. This is because each intermediate node has

they cannot be approximated in polynomial time to within any t d out | . fth ket th h inal
reasonable approximation ratio. We then present a number of 0 send out several copies of (he same packet through a single,

ef cient algorithms to build a multicast tree in which the average Nite-capacity network connection. This node-incurred delay,
or the maximum delay is minimized. These algorithms cover a which is in proportion to the degree of the node in the routing
wide range of overlay sizes for both versions of our problem. tree, is in addition to the delay occurring in overlay links and
The effectiveness of our algorithms is demonstrated through ~on even dominate it as we show shortly. In particular, this

comprehensive experiments on different real-world datasets, and issue becomes more critical in larae-scale overlay networks
using various overlay network models. The results con rm that 'SSY rcal 1 g verlay netw

our algorithms can achieve much lower delays (up to 60% With strong connectivity. In these networks, as intuitively
less) and up to orders of magnitude faster running times (i.e., expected, most shortest paths consist of a few hops only [13],
supporting larger scales) than previous minimum-delay multicast [14], leading to large node degrees in a multicast tree.
approaches. To get a numeric intuition on this problem, suppose we
would like to deliver one packet of:2 KB (10 Kbits) to
1000 nodes in an event noti cation overlay. Assume that
Minimum-delay routing of data in overlay networks is averlay nodes have &0 Mbps Internet connection and are
fundamental problem for several distributed applications. Fon average handling data @b concurrent sessions; hence it
instance, consider a delay-sensitive event noti cation systeskes20 ms for a node to send out one copy of the packet.
in which an event generated at a node needs to be signafdsb assume that the delay between every pair of nodes is
to a large group of monitoring nodes with minimum latencyi00 ms, and the average shortest path lengtB fi®ps in the
e.g., a Distributed Interactive Simulation (DIS) software fooverlay (i.e., a delay 0800 ms). Thus, the average degree of
military systems [1], [2], nancial trading through large groupsiodes in the multicast tree is abol®03=2 ' 10, and the
of globally-interlinked computer systems [3], [4], or massivaverage delay incurred by each node to forward the packet is
multiplayer online games [5], [6]. Also note that the groupwverage.;10(i 20 m9=110 ms, i.e., a total node-incurred
of receivers corresponding to a source node in these systaigky of 330 ms in a typical 3-hop path. Note that the total
may not be constant over time, such as a dynamic agentliik-by-link delay of such path was onig00 ms.
a virtual environment (e.g., online game) moving across theYet, the problem with delays incurred by node degrees
Area of Interest (AOI) of other entities [7], [8]. in application-layer multicast is often ignored [15]-[19] or
Therefore, forming overlay multicast groups (which nodesnly partially addressed by previous works, such as bounding
should join and leave) in such dynamic systems and maintaimede degrees in a tree to prede ned thresholds [20]-[24]. The
ing the corresponding state information in the intermediaproblem with large node degrees, however, is of the same type
overlay nodes, as in several classic multicast techniques [@s-the shortest-path routing problem—minimizing the incurred
[12], is not an ef cient solution. A naive alternative approach igelay. It thus needs to be considered together with link delays
to send each message directly from the source to each receivethe routing decisions, rather than as a separate problem and
This solution, however, is not scalable since it requires eaahthe coarse grain of being or not being within a threshold.
node to have (and constantly monitor the state of) a connectiorin this paper, we study the overlay multicast routing problem

I. INTRODUCTION

for minimizing the actual end-to-end delay. In particular, theot clear how these degree bounds are selected in practice;
contributions of this paper are as follows. We rst formulatdéor instance, a xed bound of 10 is used in [28]. In [24]
the two problems of minimizing the average and the maximuinis proposed to set the degree bounds based on the level
delay in multicast trees, and we prove their NP-hardneséthe node in the tree. Nevertheless, these works only aim
as well as their inapproximability to within any reasonablat bounding node degrees to given thresholds. Rather than
ratio. That is, we show that no polynomial-time approximaiounding degrees at such coarse grain, we capture the delay
tion algorithm can guarantee any better delay than sevetaused by node degrees together with the delay incurred at
times beyond the optimal value. We then present a set mferlay links as a single delay cost and minimize it.

ef cient algorithms for building multicast trees with minimum The only previous work considering this problem, to the best
average (or minimum maximum) delay. These algorithnme our knowledge, is done by Brosh et al. [29] who propose
support a wide range of overlay sizes for both minimurman approximation and a heuristic algorithm for minimizing
average and minimum-maximum applications. To demonstratee maximum delay in a multicast tree (the problem with
the effectiveness of these algorithms, we conduct an extensmmimum-average delay is not considered). However, the pro-
evaluation study on different real-world datasets, and usipgsed approximation algorithm and its bound only correspond
three different overlay network models. We show that th®e the special case diroadcastinga message in aomplete
actual delay observed by multicast receivers can be reduaee@rlay graph, whereas often in practice neither the overlay
by up to 60%, and the calculation time for multicast trees big a complete graph (i.e., every node maintains and monitors
up to orders of magnitude (i.e., supporting several times largerconnection with every other node) nor all messages are
scales), if our algorithms are employed. destined to all nodes. Furthermore, even for this special case

In the remainder of this paper, we rst summarize the relatade approximation factor i©(logn) and O(log n=log logn)
work in Section Il. We then formally de ne our multicastfor directed and undirected overlay graphs, respectively, which
problems in Section Il and review the routing model on whicts a considerable amount. In fact, the heuristic algorithm
our algorithm is built. Section IV presents our algorithmsroposed by the authors (with no approximation guarantee)
followed by a thorough evaluation study in Section V. Werovides lower delays than the approximation algorithm while
conclude the paper in Section VI. being also more ef cient in running time [29]. Nevertheless,
the achieved delay and the running time of this algorithm are
signi cantly larger than our algorithms.

The problem of our interest in this paper is to deliver data We also note that an important factor determining the
with minimum end-to-end delay from a given source to a set e€alability of a multicast scheme is the underlying routing
receivers on a mesh overlay. Compared to arranging nodepintocol. The common approach used in [29] and several other
xed overlay multicast trees [20], [23], calculating on-demanevorks is link-state based routing [12], [13], [15], [18], [19],
per-source trees on a well connected mesh overlay provid2s], which allows all nodes to know the full topology of
much higher exibility in selecting paths and better resiliencéhe network while suffering from high overhead and limited
against dynamics of the network [11], [16]. Moreover, ascalability (as we will show). Our multicast scheme, on the
discussed earlier we consider source-based multicasting,other hand, is based on a variant of distance-vector routing
which the intermediate nodes do not need to keep any pand can be up to orders of magnitude more scalable.
session state information or to perform route calculations
for each message. Instead, the source node calculates the !!l- SYSTEM MODEL AND PROBLEM STATEMENT
routing tree and embeds it in the message (e.g., using BloonThis section presents the formal statement of our multicast
Filters [25]), and the intermediate nodes only perform simpf@oblems and their hardness, followed by a description of the
forwarding. routing model underlying our algorithms.

Most overlay multicast algorithms only minimize the link-)
by-link distance to the receivers [15]-[19]. However, as di¢ Notation
cussed earlier, a signi cant factor in the actual end-to-end A summary of the notations used in this paper is given in
delay is the delay incurred at overlay nodes that send out edelble |. Consider an overlay network interconnecting a large
message several times. There have been a number of previpysulation of distributed hosts. The overlay is modeled by a
works that did consider the node degree problem [21], [22]raph G = (V;E) in which each vertew 2 V represents
[24], [26], [27], but they only try to nd a routing tree in which a host and each edde;v) 2 E represents a link between
the degree of nodes is bounded to prede ned thresholds. Itawb connected hosts. L& = jVj, andw(u;Vv) be the length
al. [27] analyzed several forms of the multicast tree probleraf edge(u;v), which is the network delay between nodes
and showed that it is NP-Complete to nd various form&nd v in our application. We assume each overlay node is
of degree-bounded trees, such as one with minimum totainnected to the underlying network, typically the Internet,
distance or one with minimum distance to the farthest receivera one link (nodes are assumed not multi-homed; also a node
Heuristic algorithms for constructing degree-bounded shortegth multiple NICs connected to the same network can be
path trees [22], [26] and degree-bounded minimum-diametaodeled as having one NIC with the aggregated bandwidth).
spanning trees [21], [28] have been proposed. However, itTise connection bandwidth of each node is a nite number,

IIl. RELATED WORK

TABLE |

NOTATIONS USED IN THIS PAPER delay (equivalently, the total delay) is minimized, and (ii) a
_ _ tree in which the delay to the farthest node is minimized. We
Notation | Description - propose algorithms for both versions of the problem.
GV.EN | Overlay graphG = (V:E). N = jVj. Our algorithms for case (i) are not based on encoding the
Gpv Partial view of overlay graph based on path vectg

rcs)' tree structure in full in the data; they do not need to specify

T;s;R The routing tree, the source node, and the se . . .
receiver nodes, respectively. a forwarding orderfor each intermediate tree node, and can
Z Size of the message being distributed. work with f (v) values de ned in Eq. (2). This is preferred,
u(2) Time it takes for nodes to send out a message ¢f as it enables the use of mechanisms such as Bloom Filters
sizez.] for encoding the tree [25]. The algorithms for case (ii), on the
w(u; v) Delay of overlay link(u; v). other hand, have to specify a forwarding order for the children

dr,dc(u) | Degree of nodes in treeT or graphG.
Qur (V) Theturn of v among the children ofi in T.

of each node (and therefore work with(v) values de ned
in Eq. (1)), since the maximum delay in a tree depends to a

tr (u) Time at which nodeu receives the message over ’ g
treeT. large extent on the ordering of each node's children.

gr (U) Number of receiver nodes in the subtree rooted at Problem 1: Given a source nods and a get of receivers
uin treeT (includingu itself). RV, construct a multicast tre€ such that ,, fr (u) is

ht (u) The delay fromv to its farthest descendant. minimized

D; D max Average and maximum node degree in the overlay. g . .

LT Average and maximum hop count of pairwise Proplem 2: With the same inputs as in Erob!em 1 construct
shortest paths in the overlay. a multicast treel such thatmaxyzr tt(u) is minimized.

Theorem 1 shows the NP-hardness as well as an inapprox-
imability factor for Problems 1 and 2. The proofs are omitted

according to which we de ne ,(z) as the time it takes for due to space limitations and can be found in [30].

nodeu to sendz units of data to the network. Since the time Theorem 1:Problems 1 and 2 are NP-hard, and also no

for nodeu to process a message is much smaller than the tifp@lynomial time approximation algorithm for either of them

it takes to send out (possibly multiple copies of) the messag@n guarantee an approximation factor(df)In n for any

to the network, we ignore the processing timeuaaind let > O (under the conventional assumptions for P and NP).
u() be a function of the connection bandwidth wfonly. C. Routing Model

For example, for a host with a 10 Mbps Internet connection o .
and a message @=1 bit, ,(z)=10 7 seconds. To enable a fully distributed routing scheme, overlay nodes

We capture the node degree-incurred delays (also referredf¢d t0 generate and exc.hangfe Eenogim routing information.
as nodal delays) in a multicast tree as follows. Tedenote an We adopt a modi ed version of the dlstgnce-vector routing
arbitrary multicast tree rooted at a given sousa@nd reaching protocol, where each node announces its shortest distance
the receiver seR V, anddr (u) be the number of children to each destination, as well as the path itself; in our case
of u in T. Onces started distributing a message of szeat the nodes also announce theif,() values along with this

time 0,tr (v) is the time at which node receives the mess’ageinformation. This is similar to the technique employed in
over T. Assuming noda is the parent of in T, we have: the BGP protocol and is usually referred to as path-vector
routing. This approach allows each nad# construct a graph

tr(s)=0; tr(v) = tr(u)+w(u;v)+ (2) ar(v); (1) Gby = (V8,;Ef,) whereVy, = V, andEY, consists of only

a representativesubset ofE for u: the edges on the shortest
path, as well as up tdg(u) 1 alternative short paths, from

u to all destinations in the graph. A brief comparison of the
verhead and other desirable features of path-vector routing
meared to the two alternatives, distance-vector and link-state
routing (used in most overlay routing schemes), is given in our
extended technical report [30].

wheregy.t (V) (1 qur (V) dy(u)) shows theturn of node
v among thedy (u) children ofu in T that are waiting to
receive a copy of the message.

Because in some cases we may not be able to expliciﬁ
dictate an order among the children wfin T, we also take
the expecteddelay observed at each child afinto account.
We de ne fr (v) as in the following equation, by replacing
a7 (V) in Eqg. (1) with E[q,t (V)], the average of possible IV. MINIMUM -DELAY MULTICAST ALGORITHMS

turns betweerl anddr (u) for a child. In this section, we rst provide an overview of our

dyc(u) minimum-delay multicast tree algorithms, and then present the
E ot (V)] = Fam) i=(dr(u)+1)=2 details as well as the analysis of the algorithms.
T L
i=1 dr (U)+1 A. Overview of the Algorithms

tr(s)=0; fr(v) = fr(u)+ wuv)+ u(2)

2 @ Our algorithms include two operation modes: MinSum for
minimizing the expected total delay (Problem 1), and MinMax
for minimizing the maximum delay in the tree (Problem 2). We

We consider two versions of the minimum delay multicasefer to these algorithms 8dSDOM and MMDOM (Min-
problem: (i) constructing a multicast tree in which the averaggum/MinMax Delay Overlay Multicast). These algorithms

B. Formal De nition of the Problems

outperform the previous related approaches in both multicatinimum End-to-end Delay Overlay Multicast
tree efciency and running time, as analyzed in the ne)f\ﬁSDOM e
section. Nevertheless, to further extend the application of our -

work to larger overlays, we design an additional algorithm fay JVtheBgllgE_mg;yTre(s) =10 N] =1 5 ts] =0

each operation mode (MinSum/MinMax) that is optimized fog_ cosf] = “preM] = ; // To nd the best node to attach
speed, with orders of magnitude faster running times. Thegse forvinV T do

algorithms are particularly suitable for large overlays whef® cosf] = ; /I To nd the best attachment point for
our former algorithms (and the related previous approach&s) for u in neighborgv; Gev) s.t.u2 T do

/I Cost of attachiny to T throughu:

can.not opera'te fast enough. We refer to the former (del - cosfu] = t[v] + w(u:v)+ (dr (U) + 2) =2 .(2)

ef cient) algorithms as MSDOM/MMDOMe, and to the latter g cosf[u] += 1 =2 «(z) (SubTreeSize(u) 1)

(fast) version as MSDOM/MMDOM:- algorithms. 10. u = argmin(cost) // Best attachment point for
Each overlay node that is to distribute a message rubb if u == NULL then continue

the relevant version of the algorithm based on the targk$ cosfv] = cosflu]

applications. The input to the algorithm consists of the st v Er?r{gr]nfr(gosb u = prevv |

of the node's links to its neighbors, as well as the path vectpg AttachToTreéT;v ;u)

information that the node has received from its neighbors. The. if v 2 R then R.removév)

resulting multicast tree is then encoded in the message. e Update_(T;u ;t[])

intermediate overlay nodes are free of any additional compuf&: CleanUgT;s)

tions or keeping any per-session multicast state informationX>: "¢ T

they only forward the data to their neighbors according to théMboM_e ()Y

information embedded in it. 1. T = BuildEmptyTreés) ; t[i=1;:::;N]=1 ;t[s]=0
The multicast tree calculated by the source node can eitlzerwhile R 6 ; do

be encoded in full in the message (with an overhea@@i)), 3. foruinV do

or be encoded as a digest, e.g., using xed-size Bloom Filtels gir;‘[’[uli]_:t[uh ¢ (1))

that can signi cantly reduce the overhead with negligible falsg -V - T !

positives [25]. In this paper we only study the calculation of, while S 6 : do

minimum-delay multicast trees, and the detailed encoding &f u = argmin,, s (disfu])

the tree is out of the scope of the paper. Nevertheless, %e S:removeu)

highlight that the MSDOM algorithms do not need to specify?: for (;/_mdr_lelghb?rrgu ;GPVJZ s.t.v 62T do
the full tree structure for the intermediate forwarding nodes—»’ if :j <Isé:|l[i:t[\]/] the; (@) + w(u V)
they allow the use of Bloom Filter digests. The MMDOM;3. disfv] = d

algorithms, on the other hand, requires to signal the full trad. prejv] = u

structure (as in the similar work in [29]), because a forwardinkp. // Attach the farthest node

v = argmax; g,y (disfv])
H = List containing hops of path t@ according topre\f]
for v from H .FirstNodeNotInTre€l) to H .last() do

order among the children of each node needs to be speci
so that the forecasted maximum delay can be actually metjig

the network; see,t (V) in Eqg. (1). 19. u = prejv] // Parent of the to-be-attached nodén T
The routing table underlying our algorithms iglg(s) N 20. AttachToTre€T; v; u)

matrix at each node (based on which th&py view is created 21. t[v] = disfv]

at s); see Table | and Section IlI-C. An ent(y;j) of this gg etumn ”irV 2 R then R.removgv)

matrix represents the shortest path to overlay roderough

the i-th neighbor ofs. Row i of this matrix is maintained Y Variables used in the code are described in Table I.
over time according to the path vector information that the
node receives from the corresponding neighbor. Each path Fig. 1. The proposed overlay multicast algorithm.

vector entry from this neighbor represents the shortest path

of this neighbor to some overlay node: the path's hops and

hop-by-hop distances (i.60(L may)). Moreover, a min-heap is v 62T (Lines 4 and 6), we nd the cost as the increase in the
maintained on each column of the table, to quickly return trexpected total delay to all nodes caused by this attachment
best neighbor for reaching each destination. The complex{iyines 8 and 9). This delay consists of the expected delay to

of maintaining the routing table is analyzed shortly. nodev itself, as well as the expected delay to be suffered from
]]] by other descendants of since the degree af is going to
B. Detailed Multicast Algorithms increase (see Egs. 1 and 2). Having applied the minimum-cost

Our multicast algorithms are speci ed in Figures 1 and 2. lattachmen{u ;v) (Lines 14 and 15), we update the current
the MSDOM - algorithm, we start from the sourseand build distance value (array) of all affected nodes (Line 17), i.e.,
the multicast tree by incrementally adding nodes accordingttee children and all further descendants of nade Finally,
their distances to the current tree. More speci cally, for anywe clean up the tree (Line 18) by keeping only the paths that
potential attachmenu;v) to the treeT whereu 2 T and end at some receiver node.

The MMDOM-e algorithm repeatedly runs our modi ed Minimum End-to-end Delay Overlay Multicast

version of the Dijkstra a}lgorlthm to nd the farthest .nOdq\/ISDOM_MMDOM_f (modeY

from the current tred . This modi ed shortest-path algorithm ;' . -4e VinSum or MinMax.

(Lines 3 to 14) can start from multiple nodes (see the ini- T = BuildRegularShortestPathTres)

tialization of dist]] in Line 5), considers the current degree. Re neTredmodé(T;s)

of nodes in the existing tree (Line 5), and expands based $nreturn T

aggregated link and nodal delays given the current tree (LiR@ neTree[MinSum] (T; u)

11). Having found the farthest node from the treey as 1. if u.lsLeaf() then return

well as its predecessors on the path starting from some n@deCll = u:children() sorted in descending order gf (C[i])

in T (i.e., nodes in lisH in Line 17) are added to the tree3- ' t\‘/’ in C[J do

Note that after this addition, the degree of a number of_ nodgs foEI ; in T .root.neighbor§ do

changes, making the recently calculated shortest-path distanges t%a] = SavingByRouteChan@E; v; a)

no longer accurate. Thus, the next farthest node is searciied a = argmaxt%]g

for again in the next iteration. 8. if tTa]> Othen _

The running time of the MinSum and MinMax algorithms." T:DeleteRoute(v) // Detachv and its subtree

a1 2 . T:InsertRoutév; a)

presented so far, as we analyze shortlyOiN “Dpy) where 74 SortC[] again in descending order af (C[i])

Dpy is the average degree in the path-vector based view 1f for v in C[] do

the overlay graph. This running time may not be efcient3. ReneTredT;v)

enough for large overlays, as quanti ed in the next section. Wg, neTree[MinMax] (T u)

therefore develop additional algorithms, MSDOM/MMDOM-1, T:FixForMinMax()

f, which are optimized for speed.
In these algorithms, which are illustrated in Figure 2, wé

rst calculate the regular shortest-path tree framto the

receivers. This is simply done by merging the shortest paths

2. for i =1 to MAX_REFININGSdo

v = T:FarthestLea)
t=;
for a in T.root.neighbor¢) do
t%a] = SavingByRouteChangE; v; a)

to the destinations given in the path-vector routing table (ah
example on the MSDOM/MMDOM- algorithms and routing 8.
tables can be found in the extended technical report [30%).
This tree is then re ned according to the given objectivé?' T:InsertRoutév; a)

T . 1. while v 6 T.rootdo
minimizing the total delay or the maximum delay. 12, v = v.parent

In the MSDOMH{ algorithm, the tree is re ned in a top- 13. v:FixChildrenForMinMax)
down manner from the root downwards. For each nage 14. T.FixNodesD§
we look at each of its childrew and consider routing to y variables used in the code are described in Table .
it through an alternative route (Lines 5 and 6 of function
Re neTree[MinSum]). The alternatives for a nodeare to
route tov through any other of thdg (s) neighbors of the root
s than the one currently used to reachGiven the path vector
information available a$, we evaluate the possible alternativanode with maximum delay (Line 3), and tries to nd an
routes, and change the current routevtd necessary (Lines alternative shorter route to the node (Lines 5 and 6).
7 to 10). To re ne the route to the children of node we The algorithm terminates if the tree reaches a state where
rst consider those children that have the highest number tife distance to the farthest node cannot be shortened (Line
receivers in their subtrees (the sort operation in Line 2), sin8 or if the total number of re ning steps reaches a bound
any saving in the delay to those children will likely yield aMAX_REFININGS in the code). We set this bound to
higher overall saving. Once nished relaxing the degree dd=logN) to keep the worst-case running time @(N ?)
nodeu, the algorithm proceeds with the next level which iganalyzed shortly), although in our experiments the algorithm
re ning the subtree of each child af. has terminated much earlier than this bound. To enable ef-

For the MMDOM+{ algorithm, we rst note that the maxi- cient reordering of each node's children and retrieval of
mum delay in the subtree rooted at a nadean vary much the farthest node in the tree, at each nadeve maintain
based on the ordering afs children to receive the messagecertain information includingr (v) and ht(v). After each
(seequt (v) in Eq. 1). Thus, we need to obtain an optimamodi cation in the tree, the information maintained at up
ordering for the children ofi. Denoting byh+ (v) the delay to O(N) nodes may need to be updated. For example, after
from v to its farthest descendant, the optimal ordering @hoving nodev from its old parentu to a new parent®, the
u's children for minimizing the maximum delay correspondslelay to each descendant ef the correct ordering of the
to sorting the children in descending order of thhir(v) children ofu®and those ofi®s ancestors, and accordingly the
values. This is done for all nodes of the tree in functiodelay to each descendantdtandu®s ancestors needs to be
T.FixForMinMax (Line 1; similarly done later for any affectedupdated. Therefore, we simply update the data structures for all
node in Line 13). In each iteration, the algorithm picks theodes of the tree i©(N) time (Line 14 of the pseudocode).

a = argmaxtT]g
if tYa] Othen break // No more re nings
T:DeleteRoute(v) // Detachv and its subtree

Fig. 2. The proposed routing algorithm.

C. Analysis called a scale-free network), such as the worldwide web, nodes

A summary of the memory requirement and running tim¢'at are popular are more likely to receive new links; the
of our algorithms is as follows. The total memory space fdtetwork therefore has a power-law degree distribution [36].
maintaining the required data structures at a node and runniY§ 9enerate these networks following the Barabasi-Albert
our algorithms is on averag®(NDL may), WhereL max is the moc_iel [36], Wh_ere a new n,gdeconnects to an eX|§t|_ng node
maximum hop count in a shortest path (i.e., the hop count fWwith probability d ¢ (u)=",,y ds(v) (determining the
the overlay diameter). Moreover, the time taken by a node §€rage degree). _ . _
update the routing table, upon receiving a path vector of sizeThe parameters that we vary in our evaluations include
O(NL may from a neighbor, is 0O(N (Lmax+ log N)). The the overlay size N), average node degre@], number
running time of both MSDOMe and MMDOM-e algorithms ©f receivers J(RJ),_ and node-incurred delays (mcludllng their
is bounded byO(N 2Dpy). The MSDOM# algorithm runs in Qynamlcs). Speci cally, we de ne as the average time that
O(NDL ma) time. The MMDOM{ algorithm takesO(N 2) it takes for a node .to send oqt egch copy of the message. To
time, given that we bound the number of its re ning stepg®t & sense of various combinations of node bandwidth and
(each takingO(N logN) time) to N=logN as mentioned Wor_kload as well as message size (Whlc_h are the factors gov-
earlier; though we also note that the number of re ning stefning the nodal delay), we consider a diverse range of values
taken by this algorithm in our experiments has been far 1 from 10 ms to 1000 ms in our experiments, assumed
thanN=1logN . Additional details on our complexity analysisthe same (50%) for all nodes. For example= 10 ms can

can be found in the extended technical report [30]. represent the case where the message is a 10 Kbits (1.2 KB) IP
packet, and each node has a 10 Mbps Internet connection and
V. EVALUATION is handling 10 concurrent multicast sessions on average; we

We evaluate the performance of our algorithms on hundre@iso analyze the dynamics of nodal delays in our evaluations.
of overlay networks built on top of two different real-worldFurthermore, to consider the delivery of a continuous ow of
Internet delay datasets, and according to three different overf#ata, we note that each node would send the data in chunks to
graph models. Our evaluation setup and the obtained resifgschildren in the multicast tree. Assuming TCP transport, to

are presented in this section. maximize the throughput, the node sends a continuous chunk
of up to a full TCP window to its rst child, then to the second
A. Setup child, and so on. The message sizean therefore be assumed

To capture the actual delay between hosts in the Internefg to the maximum window size, e.g., 128 KB (1 Mbits)
which is a key factor determining the effectiveness of args it is the default value in most Linux distributions. Thus,
overlay multicast algorithm, we use the data from two different= 1000 ms can represent the multicast of a continuous
measurements: the Delay Space Synthes2&f) project [31] ow on the aforementioned network.
which provides the measured pairwise delay between abouGiven an overlay network oN nodes and a number of
4000 Internet hosts, and tiMeridian project [32] containing receivergRj, in each run we select a sender gRqjl receivers
the delay between 2500 hosts. We sometimes need to dowtrandom fron{1; N]. We then generate multicast trees using
sample the set of 4000 (or 2500) nodesNo< 4000 nodes ours as well as previous approaches (described shortly) on the
in our experiments. To ensure having a representative subseme input:Gpy view of the overlay,s and R. We repeat
we use a variant of thke-means clustering algorithm [33] thateach experiment 100 times: on 10 different overlays, and 10
takes the besN center points among the original 4000 (odifferent sender/receivers selection on each overlay. We then
2500); it minimizes the sum of the squared distance betwegreasure the average delay and running time obtained in the

each original point and its closest center point. 100 cases. Finally, since in the MinSum algorithms a source
On top of these datasets, we create overlay networks baseés not transmit the full (ordered) tree structure (see Section
on three different overlay graph modetlsmall world [34], 1ll), we simulate this lack of knowledge by shufing the

random [35], andpower law [36]. In small-world networks, children of each node in the created tree before evaluating
links are more likely to exist between nearby nodes thahe average delay to the receivers.

distant nodes [34]. These networks are commonly observed

in social and P2P networks [37]; they have also yielddd: Results

the smallest shortest-path length between nodes in our exWe evaluate the MSDOM algorithms by comparing the
periments. We generate these networks by connecting eachieved average delay with the average delay in the regular
pair of nodes(u;v) with probability distancéu;v) !, shortest-path treeSPT) for the same overlay and receiver
where the coef cient is set according to the desired averagset. We also compare these results with the delay achieved by
node degreeD in the overlay. On the other hand, randonthe algorithm in [26], which builds a MinSum-delay multicast
networks are simpler in which all edges of different lengths ateee with bounded degrees—the closest work in the literature
treated similarly. Speci cally, we generate random network® our MinSum algorithms, to the best of our knowledge. We
according to the Erdos-Renyi model [35] where each pair ofn a binary search to nd the best degree bound value for this
nodes(u;v) exists with probabilityp, which we set according algorithm, though in our running time measurements presented
to the desired average degrfee In a power-law network (also shortly we only measure the time taken by one run of this

_ SPT 100s|-e_prS)
—=—BLS -8-MMDOM-e| - 2-~
— 5 N N = - B S
g ifL F;s _ 8] ——MMDOM-£ 105/~ 6 - MMDOM-f -
n N N B —8— 1 i)
T § | ——MMDOM-c 1 & 7
z4 —*=MSDOM- | | T |
e ——MSDOM-e | { & g
&3 : l = 1 g
g y £ 100 ms
5 . | = 4 1 &
z = _] —o—MLRS
2 1 10 ms it ——MSDOM-e
-~ 2 1 —o—MSDOM-f
. N S R S : N S 1 ms ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000 500 1000 2000 4000

Overlay size (N)

(a) MinSum-delay trees.

Fig. 3.

algorithm (not the multiple times done in the binary search).
This algorithm is labeled as “MLRS” in the following figures
(taken from the names of the authors).

We analyze the MMDOM algorithm by comparing the
maximum delay in our tree with the maximum delay in the
SPT as well as the tree created by the algorithm in [29] for the
same overlay and receiver set. As discussed in Section II, the
algorithm in [29] is the only previous study on minimizing
the joint link and node incurred delays in a multicast tree,
to the best of our knowledge. We only consider the heuristic
algorithm proposed by the authors, since it outperforms the
proposed alternative approximation algorithm (see Section II)
in both tree-efficiency and running time [29]. We also note that
this work addresses only the MinMax version of our problem.
This algorithm is label as “BLS” in the following figures.

We first evaluate the algorithms on overlays of different
sizes, and present the results in Figure 3. We also report the
time taken by these algorithms in Figure 4. Our experiments
are run on a commodity PC with Intel Core i5 2.67 GHz CPU
with 8 GB of memory. The following experiment (Figures 3
and 4) is conducted on the DS? dataset, using the small-world
overlay model, with R = N—1, D = N/10 and A = 100 ms.
The cases with N = 4000 are skipped for MLRS, BLS, and
MMDOM-e algorithms for their running times. Also, we do
not report a running time for SPT in Figure 4 as it takes a very
short time given the up-to-date routing table—only merging
the given shortest paths.

It is noteworthy that one might add the running time to
the delay achieved by the tree, since a message is not sent
out until the tree calculation is done. However, we also note
that each calculated tree is typically expected to be used for
a number of messages. For instance, back to the example of
the dynamic online agent (the source) moving across the area-
of-interest of others (the receivers) in a virtual environment,
we can realistically expect that the receiver group changes at
a quite slower pace (in the order of seconds) than the rate
of disseminating messages (several per second). We therefore
separately report both times, tree delay and running time.

In Figure 3, we first observe that the commonly used
shortest-path trees, despite being fast to build, suffer from large
average and maximum delays as they are unaware of nodal de-

Overlay size (N)
(b) MinMax-delay trees.

Overlay size (N)

Fig. 4. Running time of the algorithms in Figure 3.

Average and maximum delay of multicast trees created by different algorithms.

lays. We also observe in Figure 3(a) that both of our algorithms
outperform the previous related work MLRS [26]. MSDOM-e
trees can provide an average delay as low as half the MLRS
ones, while also being created multiple times faster (note the
log-log scale in Figure 4). Our fast algorithm MSDOM-f, is
several times faster (taking 490 ms for N = 4000) while still
providing better average delays than MLRS.

Similarly for the MinMax version in Figure 3(b), the
MMDOM-e¢ algorithm yields the smallest farthest-node delays
(< 1.3 s), significantly less (8-64%) than that of the related
previous work BLS [29] which is up to 4 s. We also subtly note
that in a few cases the maximum delay achieved by MMDOM-
f is even slightly better that the average delay achieved by
MSDOM-f, which is because the MinMax algorithms have
the advantage of transmitting the ordered tree structure while
the MinSum ones do not (see Sections III-B and V-A). Fur-
thermore, we observe in Figure 3(b) that the maximum delay
achieved by MMDOM-f and the one by BLS are relatively
close, with BLS being slightly better in some cases. On the
other hand, the running time of MMDOM-f is 2 to 3 orders
of magnitude smaller. Thus, having the MMDOM-e algorithm
for overlay sizes of up to hundreds, and MMDOM-f for larger
overlays, we can create multicast trees with much smaller
MinMax delays (less than half) and/or faster running times
(orders of magnitude) than the alternative approach BLS.

Next, we analyze our algorithms in the following experi-
ments: (i) multicast with different levels of network connec-
tivity, by varying the average node degree D in [50, 400]
(with N = 1000, |R| = 999, A = 100 ms), (ii) multicasting
to various numbers of receivers (varying |R| in [250, 999]),
and (iii) multicast with different nodal delays (varying A
in [10 ms, 1000 ms]). A summary of these experiments is
as follows. In all cases, the same trend as in the previous
experiment is observed among the achieved delay and running
time of the algorithms: both MSDOM-e¢ and MMDOM-e
algorithms achieve a smaller average/maximum delay (up to
60%) than the related works (MLRS/BLS) while still running
faster. MSDOM-f trees too provide smaller average delays
(up to 35% less) than the related approach MLRS, while also
being created up to 20 times faster. For the MinMax version,
similar to the previous experiment, the farthest-node delay in

SPT e averaged. Similarly, the experiments for each overlay model,
e MSDOMA 1o T=7BLS ' represented by the last three sets of bars in each gure, are

—#*—MMDOM-f

8| —¢=—MMDOM-e run on both datasets and the average is plotted. We observe in
, , these gures that the different algorithms perform more or less
. / the same as in the previous experiments: MSDOM/MMDOM-

D R et) O/e/"/e e algorithms produce the most delay-ef cient trees (45-60%

(2]
<
[
s}
[

(4]
t
<
g
<
@

Average delay (sec)
£
Max delay (sec)
(2]

X

= 3 7 5 3 3 7 5 smaller delays than MLRS and 20-40% than BLS) while also
variaton factor for ¢ u varton facorfor ¢ u running slightly faster than the previous approaches; note the
(@) MinSum-delay trees. (b) MinMax-delay trees. running times written on top of the bars. MSDOMaIso has
Fig. 5. Dynamics of nodal delays (). better tree ef ciency (15-40%) and running time (over an

order of magnitude) than MLRS. MMDOM-runs in almost
zero time for the same inputs on which MMDO#&and BLS

MMDOM-f and BLS trees are close, while the former one ialgorithms have taken 10+ seconds, while still creating trees
created 2 to 3 orders of magnitude faster (5-100 ms vs. 1&ith reasonable delay-ef ciency—compare to SPT which is
seconds in different experiments). Finally, regular shortest-pdtte only relevant alternative according to running times.
trees suffer from high average/maximum delays in all cases: ugsummary. We have observed that our algorithms together
to 5 times higher delay than that of our algorithms. Additionalan support a wide range of overlay sizes for both MinSum and
details on these experiments including gures and numericslinMax versions. The MSDOM/MMDOMe algorithms out-
analyses can be found in [30]. perform previous approaches in both tree ef ciency and run-

In an actual system, the nodal delays,()), just like ning time, and are the best choice for overlays of 100x nodes.
the round-trip delay between nodes (i.e., link delays), aF®r larger overlays, where previous approaches as well as
not static values. Although each nodeannounces its , MSDOM/MMDOM-e are not feasible, MSDOM/MMDOM-
value (short for (1), to be precise) as a representativalgorithms are suggested which can run fast (100-160 ms for
average over time, e.g., EWMA averaged, the momentary = 2000 and 340—490 ms foN = 4000 in our experiments
nodal delay ofu at the time of forwarding our messagen Figure 4) while producing trees with reasonable delay
may be considerably different than the announced averagéciencies: 40-55% smaller delays than SPT trees which are
Neither ours nor previous algorithms are speci cally designetie only applicable alternative.
to capture the uncertainty of these delays. Nevertheless, to
have a thorough evaluation study, we analyze the impact of

u dynamics on the ef ciency of the different multicast trees. We have studied the problem of delivering data from a
Therefore, right before evaluating a created tree, we chargmurce to a group of receivers with minimum end-to-end
the value of each node to have a random increase ordelay in an overlay network. We show that multicast routing
decrease bynultiple times: denoting thevariation factorof algorithms that simply nd a shortest-path tree can result
a nodal delay bw (v = 1;2;:::), we change each , to in large delays as they only minimize the link-by-link cost,
a randomly selected value ip ,=v; v]; that is, is ignoring the important delay incurred at high-degree nodes
multiplied by ¢ wherex U(Inv;Inv). Figure 5 shows in the tree. We formulate the problems of minimizing the
the impact of these dynamics. As expected, the average average and the maximum delay in a multicast tree, and show
maximum delay of all trees rise by the increased uctuatiotihat they are NP-hard. We also show that no polynomial-time
of nodal delays; we should also note that this is partialgpproximation algorithm can be found for these problem with
because the average nodal delay in the network increasesabyasonable approximation ratio. We design four algorithms

VI. CONCLUSIONS

observe that with varying , dynamics, the performance offor each of the two minimum-average and minimum-maximum
the algorithms relative to each other remains more or less tielay cases, we design a delay-ef cient algorithm as well as
same, with MSDOM/MMDOMe algorithms always resulting a scale-ef cient one that is orders of magnitude faster. The
in the lowest-delay trees. collection of these algorithms supports a wide range of overlay
We also evaluate our algorithms on both datasetd &8l scales, from a few hundred to a few thousand nodes. We
Meridian, and using all the three network models of smaltlave conducted a comprehensive evaluation of our algorithms
world, random, and power law. The results, including treen different real-world dataset and on overlays created by
delays and running times, are presented in Figure 6. Ttigee diverse network models. Our results conrm that our
running times for SPT are omitted as they are negligible-algorithms can achieve signi cantly lower delays (up to 60%)
few milliseconds to only merge the shortest paths given in tlaed smaller running times (up to orders of magnitude) than
routing table. These experiments are conducted on overlaypofvious minimum-delay multicast algorithms.
sizeN = 1000 with R =999, D = 100, and =100 ms. Next, we are working on algorithms to ef cientlypdatea
The experiments for each of the two datasets, represenpedviously created multicast tree, rather than re-building it, if
by the rst two sets of bars in Figures 6(a) and 6(b), arthe group of receivers has not signi cantly changed (such as
conducted on all the three overlay models and the results arehe example at the beginning of Section 1).

