
8

Analysis and Optimization for Boolean Expression Indexing

MOHAMMAD SADOGHI and HANS-ARNO JACOBSEN, University of Toronto

BE-Tree is a novel dynamic data structure designed to efficiently index Boolean expressions over a high-
dimensional discrete space. BE-Tree copes with both high-dimensionality and expressiveness of Boolean ex-
pressions by introducing an effective two-phase space-cutting technique that specifically utilizes the discrete
and finite domain properties of the space. Furthermore, BE-Tree employs self-adjustment policies to dynam-
ically adapt the tree as the workload changes. Moreover, in BE-Tree, we develop two novel cache-conscious
predicate evaluation techniques, namely, lazy and bitmap evaluations, that also exploit the underlying
discrete and finite space to substantially reduce BE-Tree’s matching time by up to 75%.

BE-Tree is a general index structure for matching Boolean expression which has a wide range of applications
including (complex) event processing, publish/subscribe matching, emerging applications in cospaces, profile
matching for targeted web advertising, and approximate string matching. Finally, the superiority of BE-Tree
is proven through a comprehensive evaluation with state-of-the-art index structures designed for matching
Boolean expressions.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Inforamtion Search and
Retrival—Information filtering

General Terms: Algorithms, Design, Measurement, Experimentation, Performance

Additional Key Words and Phrases: Boolean expressions, complex event processing, data structure, pub-
lish/subscribe

ACM Reference Format:
Sadoghi, M. and Jacobsen, H.-A. 2013. Analysis and optimization for boolean expression indexing. ACM
Trans. Datab. Syst. 38, 2, Article 8 (June 2013), 47 pages.
DOI: http://dx.doi.org/10.1145/2487259.2487260

1. INTRODUCTION

The efficient indexing of Boolean expressions is a common problem at the center of
a number of data management applications. For example, for event processing and
publish/subscribe, Boolean expressions represent events and subscriber interests
[Aguilera et al. 1999; Fabret et al. 2001; Campailla et al. 2001; Whang et al. 2009], for
online advertising and information filtering, Boolean expressions represent advertiser
profiles and filters [Machanavajjhala et al. 2008; Whang et al. 2009; Fontoura et al.
2010], and for approximate string matching they can represent string patterns [Fellegi
and Sunter 1969; Chaudhuri et al. 2003; Chandel et al. 2007]. In all scenarios, key
requirements are the scaling to millions of expressions and to subsecond matching la-
tency. We use a data management scenario for cospaces as in-depth example. Cospaces
are an emerging concept to model the coexistence of physical and virtual worlds
touted by the Claremont Report as an area of rising interest for database researchers
[Agrawal et al. 2008; Ooi et al. 2010]. Consider, for example, a mobile shopping
application, where a shopper enters a physical mall and her mobile device submits

Author’s address: M. Sadoghi; email: mo@cs.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0362-5915/2013/06-ART8 $15.00

DOI: http://dx.doi.org/10.1145/2487259.2487260

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:2 M. Sadoghi and H.-A. Jacobsen

her shopping preferences (i.e., subscriptions) to the virtual mall database, as follows:
[genre = classics, era ∈ {1720s, 1730s}, price BETWEEN [20, 40], ranking < 5, format
/∈ {mass market, paperback}]. Now, assume a new promotional item (i.e., an event)
matches the shopper’s interests and the item detail is pushed to her mobile device. An
example of a matching item is as follows: [genre = classics, title = “Gulliver’s Travels”,
author = Jonathan Swift, era = 1730s, price = 26, ranking = 2, format = hardcover].
In the example, both the shopper’s interest and the promotional item are defined over
multiple attributes (i.e., dimensions in space) such as genre and price in which each
attribute has a discrete and finite domain. Furthermore, each attribute of interest is
constrained to a set of values with an operator. The triple consisting of attribute, op-
erator, and set of values is referred to as a Boolean predicate. A conjunction of Boolean
predicates, which here represents both the shopper’s interest and the promotional
item, is a Boolean expression. Next, we present the broad applicability of Boolean
expression indexing matching; followed by the shortcoming of the existing techniques.

1.1. Motivation

Online Profile Matching. Prominent profile-driven Web applications are targeted
Web advertising (e.g., Google, Microsoft, Yahoo!) and job seeker sites (e.g., Monster). For
example, in Web advertising, a demographic targeting service specifies constraints such
as [age ∈ {25, 27, 29}] while an incoming user’s profile also includes information such as
[age = 27]. Thus, only ads that match a user profile are displayed. Similarly, in online
job sites, an employer submits the job detail, [category = ‘green jobs’, hours/week >
15, and rate < 45], while a job seeker registers his profile, [category = ‘green jobs’,
hours/week = 20, and rate = 30], in which the employer is notified of only matching
applicants [Machanavajjhala et al. 2008; Whang et al. 2009; Fontoura et al. 2010].
These scenarios require the indexing of potentially millions of expressions and require
event matching latency in subsecond.

(Complex) Event Processing. Event processing is gaining rising interest in industry
and in academia. The common application pattern is that event processing agents
publishes events while other agents subscribe to events of interest. Extensive research
has been devoted to developing efficient and scalable algorithms to match events and
subscriber’s interests [Yan and Garcı́a-Molina 1994; Aguilera et al. 1999; Fabret et al.
2001; Campailla et al. 2001; Rjaibi et al. 2002; Whang et al. 2009; Fontoura et al. 2010;
Farroukh et al. 2011; Cugola and Margara 2012]. The predominant abstraction used
in this context, is the content-based publish/subscribe paradigm to model an event
processing application. Applications that have been referenced in this space include
algorithmic trading and (financial) data dissemination [Sadoghi et al. 2010], business
process management [Hull 2008], and sense-and-respond [Chandy et al. 2007].

Big Data Analytical Processing. A key challenge in processing analytical type queries
in large databases is to cope with the ever increasing volume and velocity (i.e., data
arrival rate in form of update, insertion, and deletion queries) of data. Recently, there
has been a new paradigm shift for big data processing which is strikingly similar to
event processing. In this new paradigm, disks are continuously scanned, and data is
fetched in chunks and pushed to only interested queries. Essentially, in this push-
based model, a traditional database is transformed into a streaming database which
brings two key benefits: elimination of the need for indexing the data and relying
solely on a fast sequential scan of the disk. This new model also partially boils down
to efficiently identifying which queries are interested in the latest fetched data chunk
(or tuple), that is, indexing queries instead of data. One way to find the interested
queries is by extracting a query’s selection conditions that are expressed as Boolean
expressions, and in turn indexing these expressions. An example of such systems is
DataPath [Arumugam et al. 2010].

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:3

Data Quality. Data quality has been an active area of research in the database com-
munity over the past decade [Fellegi and Sunter 1969; Chaudhuri et al. 2003; Chandel
et al. 2007]. In general, data quality is effected by typing mistakes, lack of standards and
integrity constraints, and inconsistent data mappings resulting in different represen-
tations of identical entities. Therefore, many approximate string matching algorithms
have been proposed to identify similar entities [Chaudhuri et al. 2003; Chandel et al.
2007]. These algorithms are based on tokenization of a string into a set of q-grams (a
sequence of q consecutive characters). For example, a 3-gram tokenization of “string”
is given by {‘str’, ‘tri’, ‘rin’, ‘ing’}. One of the main challenges for a q-gram transfor-
mation is the curse of dimensionality [Chaudhuri et al. 2003]. That is 3-grams result
in at least 263 dimensions. For a realistic BE-Tree evaluation over real-world data, we
propose a representation of a set of g-grams as Boolean expressions to significantly re-
duce dimensionality and leverage BE-Tree to actually solve the approximate substring
matching problem. How g-grams are converted to Boolean expressions is discussed in
Section A of the electronic appendix. As in the previous scenarios, scalability to large
expression sets is paramount.

Applications in the Cospaces. The coexistence of virtual and physical worlds brings
unique opportunities for a new generation of applications. Applications that use infor-
mation gathered from the virtual world to continuously enrich a user’s physical world
experience while using the real-time information gathered from the physical world
to refresh the virtual world in turn [Agrawal et al. 2008; Ooi et al. 2010]. Examples
of cospace applications involve marketplace applications that allow virtual and phys-
ical shoppers to compete (bid on the last item) or cooperate (buy one get one free),
location-based gaming that changes the gamer’s environment relative to the gamer’s
physical location, and social networking applications that detects when virtual friends
are within a close proximity and initiates a physical interaction among them [Ooi et al.
2010]. We already illustrated a detailed example of where and how expression indexing
is important in this context in the introduction of this article.

1.2. Boolean Expression Matching Challenges

There are four major challenges to efficient indexing of Boolean expressions. First,
the index structure must scale to millions of Boolean expressions defined over a high-
dimensional space and afford efficient lookup (i.e., expression matching). Second, the
index must support predicates with an expressive set of operators. Third, the index
must enable dynamic insertion and deletion of expressions. Fourth, the index must
adapt to changing workload patterns.

However, existing techniques are inadequate to satisfy these four requirements.
For instance, techniques used in expert and rule-based systems support expressive
predicate languages [Forgy 1990], but are unable to scale to millions of expressions.
Recent work addresses the scalability limitation, but either restricts the predicate
expressiveness [Fabret et al. 2001] or assumes a static environment in which the
index is constructed offline [Aguilera et al. 1999; Whang et al. 2009; Fontoura et al.
2010]. Our goal is to address scalability, expressiveness, dynamic construction, and
adaptation by proposing a self-adjusting index structure that is specifically geared
towards high-dimensionality over discrete and finite domains. To achieve these goals,
we propose BE-Tree, a tree structure to efficiently index and match large sets of Boolean
Expressions defined over an expressive predicate language in a high-dimensional space
[Sadoghi and Jacobsen 2011]. BE-Tree is dynamically constructed through a two-phase
space-cutting (i.e., partitioning and clustering) technique that exploits the discrete
and finite structure of both the subscription and event space. Another distinct feature
of BE-Tree is a novel self-adjusting mechanism that adapts as subscription and event
workloads change.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:4 M. Sadoghi and H.-A. Jacobsen

In this article, we make the following contributions.

(1) We unify subscription and event language to enable a more expressive matching se-
mantics (cf. Section 3), and we evaluate various matching semantics (cf. Section 8).

(2) We propose a novel data structure, BE-Tree, that supports an extensive set of opera-
tors and a dynamic schema, gracefully scales to millions of subscriptions, thousands
of dimensions, and tens of predicates per subscription and event (cf. Section 4).

(3) We present formal analysis of BE-Tree’s key properties and (cf. Section 4 and Sections
C-E of the electronic appendix).

(4) We develop a set of novel self-adjusting policies for BE-Tree that continuously adapt
to both subscription and event workload changes (cf. Section 5).

(5) We introduce a novel cache-conscious lazy and bitmap-based Boolean predicate
evaluation to substantially improve BE-Tree’s matching time (cf. Section 6).

(6) We present the first comprehensive evaluation framework, including both micro
and macro experiments, that benchmarks state-of-the-art matching algorithms,
including SCAN [Yan and Garcı́a-Molina 1994], SIFT [Yan and Garcı́a-Molina 1994],
Gryphon [Aguilera et al. 1999], our improved Gryphon [Aguilera et al. 1999], Access
Predicate Pruning (APP) [Farroukh et al. 2011], Propagation [Fabret et al. 2001], k-index
[Whang et al. 2009], and GPU-based CLCB [Cugola and Margara 2012; Margara
and Cugola 2013] (cf. Section 8 and Section F of the electronic appendix).

The rest of this article is organized as follows. In Section 2, we survey the related
work. In Section 3, we formally define the matching problem and specify the syntax and
semantics of Boolean expressions indexed by BE-Tree. Section 4 provides an in-depth
description of our BE-Tree. Next, we introduce BE-Tree’s self-adjustment mechanism in
Section 5 followed by BE-Tree’s core optimizations, that is, lazy and bitmap-based pred-
icate evaluations and the Bloom filter optimization in Section 6. Section 7 is dedicated
to describing the BE-Tree implementation. Lastly, in Section 8, we present a comprehen-
sive experimental evaluation of BE-Tree in comparison with state-of-the-art approaches.
The article is accompanied by an electronic appendix.

2. RELATED WORK

Problems related to indexing Boolean expressions have been studied in many con-
texts: expert systems [Giarratano and Riley 1989], active databases [Hanson et al.
1990], trigger processing [Hanson et al. 1999], publish/subscribe matching [Yan and
Garcı́a-Molina 1994; Aguilera et al. 1999; Fabret et al. 2001; Campailla et al. 2001;
Machanavajjhala et al. 2008; Brenna et al. 2007; Whang et al. 2009; Fontoura et al.
2010; Farroukh et al. 2011; Sadoghi et al. 2011; Sadoghi and Jacobsen 2011; Cugola
and Margara 2012; Sadoghi and Jacobsen 2012; Sadoghi 2012; Margara and Cugola
2013], and XPath/XML matching (e.g., [Diao et al. 2003; Chan et al. 2002; Candan et al.
2006; Sadoghi et al. 2011]). Indexing in multidimensional space has been extensively
studied (e.g., [Guttman 1984; Beckmann et al. 1990; Sellis et al. 1987; Berchtold et al.
1996; Gaede and Günther 1998].)

The work on expert systems, active databases, and trigger processing [Giarratano
and Riley 1989; Hanson et al. 1990; Hanson et al. 1999] as well as certain pub-
lish/subscribe (pub/sub) work [Brenna et al. 2007] focus on language expressiveness
and not on scaling to thousands of dimensions and millions of expressions. XPath/XML
matching [Diao et al. 2003; Chan et al. 2002; Candan et al. 2006; Sadoghi et al. 2011]
is based on a completely different language from what BE-Tree supports and is not in
the scope of this work. These approaches are therefore not directly applicable, and we
concentrate our review on pub/sub matching [Yan and Garcı́a-Molina 1994; Aguilera
et al. 1999; Fabret et al. 2001; Campailla et al. 2001; Rjaibi et al. 2002; Whang et al.
2009; Farroukh et al. 2011].

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:5

2.1. Publish/Subscribe Matching

Two main categories of matching algorithms have been proposed: counting-based [Yan
and Garcı́a-Molina 1994; Fabret et al. 2001; Whang et al. 2009; Farroukh et al. 2011; Cu-
gola and Margara 2012; Margara and Cugola 2013] and tree-based [Aguilera et al. 1999;
Campailla et al. 2001; Sadoghi and Jacobsen 2011; 2012] approaches. Furthermore, ex-
isting work can be further classified as, either key-based in which for each expression a
set of predicates are chosen as identifier [Fabret et al. 2001], or as non-key-based [Yan
and Garcı́a-Molina 1994; Campailla et al. 2001; Whang et al. 2009; Farroukh et al.
2011]1 Counting-based methods aim to minimize the number of predicate evaluations
by constructing an inverted index over all unique predicates. The two most efficient
counting-based algorithms are Propagation [Fabret et al. 2001], a key-based method, and
the k-index [Whang et al. 2009], a non-key-based method. Similarly, tree-based methods
are designed to reduce predicate evaluations and to recursively divide search space by
eliminating subscriptions on encountering unsatisfiable predicates. Tree-based meth-
ods are proven to outperform counting-based algorithms [Kale et al. 2005]. Despite this
theoretical result, only few efficient tree-based matching algorithms exist. The most
prominent tree-based approach, Gryphon, is a static, non-key-based method [Aguilera
et al. 1999]. Our proposed BE-Tree is a novel tree-based approach, which also employs
keys, that we show to outperform existing approaches [Yan and Garcı́a-Molina 1994;
Aguilera et al. 1999; Fabret et al. 2001; Whang et al. 2009; Farroukh et al. 2011].

The Propagation algorithm is the state-of-the-art counting-based method with two
main strengths [Fabret et al. 2001]. First, a typical counting-based inverted index
is replaced by a set of multiattribute hashing schemes; each multiattribute hashing
scheme is referred to as an access predicate (i.e., key). Second, keys are selected from a
candidate pool using an effective cost-based optimization tuned by the workload distri-
bution [Fabret et al. 2001]. The weaknesses of Propagation are as follows: limiting keys to
only a small set of equality predicates in order to use hashing and to avoid exponential
blow up in the number of candidate keys; assuming that subscriptions are uniformly
distributed across keys to avoid degeneration of hashing into a sequential scan over
subscriptions; and maintaining a large collection of candidate hash configurations, us-
ing histograms, based on a greedy selection. Our proposed BE-Tree structure overcomes
all these shortcomings by employing a novel multilayer structure to avoid hashing de-
generation and to enable on-demand creation of histograms as needed; a self-adjusting
mechanism to adapt to workload changes without maintaining histograms; and, lastly,
to support a rich set of operators beyond the equality predicate.

To enrich Propagation with interval predicate, a Hierarchical Clustering (HC), using a vari-
ant of the Propagation cost function, is proposed in Saita and Llirbat [2004]. However,
the problem of candidate generation is worsened in HC because each cluster must now
maintains a complete set of histograms for all dimensions, for instance, dimension d =
1000, cluster size of 100, and 5,000,000 subscriptions, roughly 50,000,000 histograms is
needed [Saita and Llirbat 2004]. Furthermore, HC dynamics, merging and splitting, are
only local operations between a leaf and its parent and HC global structure fails to adapt
to workload changes [Saita and Llirbat 2004]. HC has also shifted its focus to a more gen-
eral disk-based indexing (as opposed to main memory indexing) that scales to only tens
of dimensions, but, most important, HC disregards the key observation that subscrip-
tions tend be defined over a discrete and a finite domain [Yan and Garcı́a-Molina 1994;
Aguilera et al. 1999; Fabret et al. 2001; Carzaniga and Wolf 2003; Whang et al. 2009].
This key domain property introduces new challenges, yet it provides a unique opportu-
nity for further exploitation of the inherit structure, which is fully leveraged in BE-Tree.

1The Access Predicate Pruning (APP) [Farroukh et al. 2011] introduces a filtering strategy using the notion of
access predicate, but AAP is considered a non-key based method under our strict classification.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:6 M. Sadoghi and H.-A. Jacobsen

The latest advance in the counting-based algorithm is k-index [Whang et al. 2009],
which gracefully scales to thousands of dimensions and supports equality predicates
(∈) and nonequality predicates (/∈). k-index partitions subscriptions based on their num-
ber of predicates to efficiently prune subscriptions with too few matching predicates;
however, k-index is static and does not support dynamic insertion and deletion. What
distinguishes BE-Tree from k-index is that BE-Tree is fully dynamic, naturally supports
richer predicate operators (e.g., range operators), and adapts to workload changes.

Other, complementary techniques to enhance pub/sub matching are event batch pro-
cessing [Fischer and Kossmann 2005] and top-k matching [Machanavajjhala et al.
2008; Whang et al. 2009]. The former reduces the number of index lookups by batch-
ing similar events. The latter aims to improve matching by only returning the top-k
matching subscriptions. The top-k in [Machanavajjhala et al. 2008] is based on a fixed
predetermined ranking for each subscription, and this approach leverages the R-tree
[Guttman 1984], the interval tree [Berg et al. 2008], or the segment tree [Berg et al.
2008] structure to answer top-k queries [Machanavajjhala et al. 2008]; however, these
techniques hardly scale beyond 1-dimension and do not support updating the subscrip-
tion’s rank. In contrast, a scalable, but static, top-k model is introduced in the k-index
[Whang et al. 2009].

Another emerging area of research is to improve language expressiveness. For exam-
ple, the subscription languages in [Campailla et al. 2001; Fontoura et al. 2010] support
both Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF), while the
k-index supports either CNF or DNF subscription language [Whang et al. 2009]. Finally,
there is a paradigm shift (symmetric pub/sub) in which events producers are also able
to impose filtering conditions on events’ subscribers [Rjaibi et al. 2002], which sub-
stantially improves the expressive power of the event language; this new paradigm is
supported by our BE-Tree and proposed matching semantics.

Orthogonal to matching problem is the distributed content-based routing and sub-
scription propagation algorithms (e.g., [Triantafillou and Economides 2002; Jerzak and
Fetzer 2008]). Many of these approaches employs novel techniques based on Bloom
filters. However, our usage of Bloom filter is complementary to the core of BE-Tree al-
gorithm and serves only as additional optimization layer for filtering the subscriptions
stored in the leaf levels. Similar pruning technique is also explored in Cugola and
Margara [2012], and Margara and Cugola [2013].

2.2. Traditional Multidimensional Indexing

An alternative approach in building pub/sub matching engine is to use the multidi-
mensional indexing developed in the database community; the most prominent mul-
tidimensional structure is R-tree [Guttman 1984], which supports indexing spatial
extended objects, theoretically a suitable index to solve the pub/sub matching prob-
lem. The R-tree introduced the idea of overlapping partitions to achieve high space
utilization properties, a desirable disk-based property, at the cost of downgrading the
retrieval performance [Guttman 1984]. However, this overlapping side effects further
worsens as the dimensionality increases (above three) at which point a sequential scan
is more efficient [Berchtold et al. 1996]. The problem of reducing overlapping partitions
has been tackled from different angles: R+-tree reduces overlapping by clipping objects,
but it results in exponential space blow up [Sellis et al. 1987]; R∗-tree delays splitting
and relies on reinsertion and attempts to geometrically minimize the overlap during
splitting and insertion [Beckmann et al. 1990]; X-tree is a hybrid of sequential scan
and R∗-tree and switches to sequential scan when no overlap-free split exist [Berchtold
et al. 1996]. The X-tree is the only structure that scales well to tens of dimensions, yet
takes only a passive approach to solve the overlapping problem by exploiting only the
physical storage property, that is, favoring sequential vs. random access.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:7

Among many others, interval indexing approaches such as Segment Tree [Berg et al.
2008], Interval Tree [Berg et al. 2008], and R-tree [Guttman 1984] have been proposed to
index one-dimensional objects. The Segment Tree and Interval Tree are static structures.
Although R-tree is a dynamic structure, it is sensitive to the insertion sequence, while
BE-Tree was designed to be independent of insertion sequence.

Matching in high-dimensional space, diverges from classical database indexing in
four important ways. (1) BE-Tree has to cope with data of much higher dimensionality
(order of thousands), that is orders of magnitude larger than capabilities of existing
high-dimensional indexing structures [Guttman 1984; Berchtold et al. 1996; Gaede
and Günther 1998]. (2) Expressions indexed by BE-Tree impose restrictions on a small
subspace only and are fully defined everywhere else. As a result, there is high degree
of overlap among expressions which renders current indexing techniques inapplicable.
For instance, X-Tree [Berchtold et al. 1996], often the most suitable index for high-
dimensional data, degenerates to a sequential scan in situations where all expressions
overlap. (3) Much high-dimensional indexing work focuses on high space utilization
and reducing random accesses, as opposed to optimize matching time (lookup); disk is
assumed as storage medium and disk I/O is the bottleneck. BE-Tree, on the other hand,
is a main memory structure. (4) BE-Tree aims to support discrete, finite domains, while
many high-dimensional indexing structures are designed for continuous unbounded
domains that are unable to benefit from the finite and discrete domain structure.

3. EXPRESSION MATCHING MODEL

In this section, we formalize our Boolean expression language and data model followed
by our matching semantics.

3.1. Expression Language

Traditionally, pub/sub matching algorithms take as input a set of subscriptions (con-
junction of Boolean predicates) and an event (an assignment of a value to each at-
tribute), and return a subset of subscriptions satisfied by the event. Unlike most ex-
isting work, we model both subscriptions and events as Boolean expression. This gen-
eralization gives rise to more expressive matching semantics while still encompassing
the traditional pub/sub matching problem.

Each Boolean expression is a conjunction of Boolean predicates. A predicate is a
triple, consisting of an attribute uniquely representing a dimension in n-dimensional
space, an operator, and a set of values, denoted by Pattr,opt,val(x) or more concisely as
P(x). A predicate either accepts or rejects an input x such that Pattr,opt,val(x) : x −→
{True, False}, where x ∈ Dom(Pattr) and Pattr is the predicate’s attribute. Formally, a
Boolean expression be is defined over an n-dimensional space as follows:

be = {
Pattr,opt,val

1 (x) ∧ · · · ∧ Pattr,opt,val
k (x)

}
,

where k ≤ n; i, j ≤ k, Pattr
i = Pattr

j iff i = j.
(1)

We support an expressive set of operators for the most common data types: relational
operators (<, ≤, =, �=, ≥, >), set operators (∈, /∈), and the SQL BETWEEN operator.

3.2. Matching Semantics

Our expression subscription and event language enables a wide range of matching
semantics, including stabbing subscription, stabbing event, symmetric matching, con-
tainment matching, enclosure matching, and exact matching.

We start with the classical pub/sub matching problem: Given an event e and a set
of subscriptions, find all subscriptions si satisfied by e. We refer to this problem as

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:8 M. Sadoghi and H.-A. Jacobsen

stabbing subscription2 SS(e), and specify the problem as follows:
SS(e) = {

si| ∀Pattr,opt,val
q ∈ si, ∃Pattr,opt,val

o ∈ e,

Pattr
q = Pattr

o , ∃x ∈ Dom
(
Pattr

q

)
, Pq(x) ∧ Po(x)

}
.

(2)

The reverse direction of stabbing subscription is defined as given an event e and a
set of subscriptions, find all subscriptions si satisfying e, stabbing event SE(e), and it is
given as

SE(e) = {
si| ∀Pattr,opt,val

o ∈ e, ∃Pattr,opt,val
q ∈ si,

Pattr
o = Pattr

q , ∃x ∈ Dom
(
Pattr

o

)
, Po(x) ∧ Pq(x)

}
.

(3)

The stabbing event enables us to formalize symmetric stabbing which is necessary to
model the symmetric pub/sub paradigm [Rjaibi et al. 2002]. This bidirectional matching
problem is defined as given an event e and a set of subscriptions, find all subscriptions
si satisfied by e and satisfying e, which we refer to it as symmetric matching SM(e)

SM(e) = {SS(e) ∩ SE(e)}. (4)

We can also answer much stronger matching semantics, given an event e and a set of
subscriptions, find all subscriptions si enclosed by e, denoted by containment matching
CM(e)

CM(e) = {
si| ∀Pattr,opt,val

q ∈ si, ∃Pattr,opt,val
o ∈ e,

Pattr
q = Pattr

o , ∀x ∈ Dom
(
Pattr

q

)
, Pq(x) → Po(x)

}
.

(5)

The reverse direction of containment matching is defined as given an event e and a
set of subscriptions, find all subscriptions si enclosing e, enclosure matching EM(e)

EM(e) = {
si| ∀Pattr,opt,val

o ∈ e, ∃Pattr,opt,val
q ∈ si,

Pattr
o = Pattr

q , ∀x ∈ Dom
(
Pattr

o

)
, Po(x) → Pq(x)

}
.

(6)

Last, we define exact matching XM(e): given an event e and a set of subscriptions, find
all subscriptions si enclosed by e and enclosing e

XM(e) = {CM(e) ∩ EM(e)}. (7)

The matching semantics supported by BE-Tree can be summarized as follows. BE-Tree
returns an approximate answer (a subset of answer) for stabbing event and enclosure
matching, yet it returns an exact answer for all matching problems of immediate practi-
cal interests in Boolean expression indexing: stabbing subscription, symmetric match-
ing, containment matching, and exact matching. Furthermore, our matching semantics
can further be classified as either forward matching (traditional database indexing se-
mantics, e.g., R-Tree), reverse matching (traditional pub/sub matching semantics, in
which the role of query and objects is reversed), or bidirectional matching (symmet-
ric matching). The subtle difference between forward and reverse matching is due to
the fact that the database indexing semantics differs with our proposed semantics in
an important respect. Our reverse matching semantics solves the reverse database
matching problem. In the database context, querying (matching) means finding the
relevant tuples (events) for a given query (subscription). But in our context, matching
(querying) means finding the relevant subscriptions (queries) for a given event (tuple).

The three categories of the matching semantics are (1) forward matching, namely,
stabbing event and enclosure matching; (2) reverse matching, namely, stabbing sub-
scription and containment matching; and (3) bidirectional matching, namely, symmet-
ric matching and exact matching. Alternately, BE-Tree can be characterized as to return

2This is a generalization of stabbing query, which determines which of a collection of intervals overlap a
query point.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:9

exact answers for both reverse matching and bidirectional matching and to return an
approximate answers for forward matching. The distinction between forward and re-
verse matching semantics is yet another design principle that sets apart BE-Tree from
traditional R-Tree family of indexes [Gaede and Günther 1998]).

In the remainder of this article, we simply refer to a Boolean expression as an
“expression,” and we use the term “expression” also to refer to both a subscription and
an event. Without the loss of generality, whenever it is not clear from the context, we
use the term subscription and event to distinguish between a set of expressions stored
in the index and input expression to be matched, respectively.

4. BE-TREE ORGANIZATION

BE-Tree dynamically indexes large sets of expressions (i.e., subscriptions) and effi-
ciently determines which of these expressions match an input expression (i.e., event).
BE-Tree supports Boolean expressions with an expressive set of operators defined over a
high-dimensional space. The main challenge in indexing a high-dimensional space is to
effectively cut the space in order to prune the search at lookup time. BE-Tree copes with
this challenge—the curse of dimensionality—through a two-phase space-cutting tech-
nique that significantly reduces the complexity and the level of uncertainty of choosing
an effective criterion to recursively cut the space and to identify highly dense sub-
spaces. The two-phases BE-Tree employs are: (1) space partitioning which is the global
structuring to determine the best splitting attribute attri, that is, the ith dimension
(Section 4.2) and (2) space clustering which is the local structuring for each partition
to determine the best grouping of expressions with respect to the expressions’ range of
values for attri (Section 4.3).

This two-phase approach, the space partitioning followed by the space clustering,
introduces new challenges such as how to determine the right balance between the
space partitioning and clustering, and how to develop a robust principle to alternate
between both. These new challenges are addressed in BE-Tree by exploiting the under-
lying discrete and finite domain properties of the space. We begin by discussing the
structure and the dynamics of BE-Tree before presenting the main design principles
behind BE-Tree. All these are prerequisites to the actual, but much simpler, expression
matching with BE-Tree, described in Section 7.

4.1. BE-Tree Structure

BE-Tree is an n-ary tree structure in which a leaf node contains a set of expressions
and an internal node contains partial predicate information (e.g., an attribute and a
range of values) about the expressions in its descendant leaf nodes. We distinguish
among three classes of nodes: a partition node (p-node) which maintains the space par-
titioning information (an attribute), a cluster node (c-node) which maintains the space
clustering information (a range of values), and a leaf node (l-node) which stores the
actual expressions. Moreover, p-nodes and c-nodes are organized in a special directory
structure for fast space pruning. Thus, a set of p-nodes is organized in a partition direc-
tory (p-directory), and a set of c-nodes is organized in a cluster directory (c-directory.)
Before giving a detailed account of each node type and the BE-Tree dynamics, we outline
the structural properties of BE-Tree as shown in Figure 1, and give an example showing
the overall dynamics of BE-Tree.

Example. Initially, BE-Tree has an empty root node which consists of a c-node that
points only to an l-node. Upon arrival, new expressions (subscriptions) are inserted
into the root’s l-node, and once the size of the l-node exceeds the leaf capacity—a
tunable system parameter—the space partitioning phase is triggered and a new attri
for splitting the l-node is chosen. The new attri results in the creation of a new p-node.
The attri is chosen based on statistics gathered from expressions (subscriptions) in the
overflowing l-node. The selected attribute is passed on to the space clustering phase

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:10 M. Sadoghi and H.-A. Jacobsen

Fig. 1. The BE-Tree data structure.

that divides the domain of the attri into a set of intervals, in which each range of values
is assigned to a new c-node, and all the expressions having a predicate on attri, in the
overflowing l-node, are distributed across these newly created c-nodes based on the
c-nodes’ range of permitted values. In brief, BE-Tree recursively partitions and clusters
the space. These two phases together recursively identify and refine dense subspaces,
in order to maintain the size of each l-node below a threshold.

Strictly speaking, in BE-Tree, each p-node is assigned an attri such that all the expres-
sions in its descendant l-nodes must have a predicate defined over attri. Similarly, each
c-node is associated with a predicate Pattr,opt,val

i (x) (i.e., a range of permitted values),
and all the expressions in its descendant l-nodes must have a predicate Pattr,opt,val

j (x)
such that (

Pattr
i = Pattr

j

) ∧ (∀x ∈ Dom
(
Pattr

j

)
, Pj(x) → Pi(x)

)
. (8)

Provided that each c-node is denoted by a predicate Pj(x), we can assign each l-node
a key keyj defined as a conjunction of all c-nodes’ predicate along the path from the
root to the lj-node.

In what follows, in order to uniquely identify the same category of nodes, a unique
id is assigned to each node. For example, in order to refer to the jth l-node, we write
lj-node. In addition, we refer to BE-Tree internal parameters as follows: maxcap (system
max leaf capacity), minsize (system min partition size), max j

cap, (lj-node max capacity),
freqwindow, (update frequency window), θ (l-node recycling threshold), ratioexp (exploit
vs. explore ratio), and ratioins (reinsertion ratio).

4.2. Space Partitioning

In BE-Tree, space partitioning, conceptually a global adjusting mechanism, is the first
phase of our space-cutting technique. The space partitioning is triggered after an
lj-node overflows and uses a scoring function (cf. Section 5) to rank each candidate
attri in order to determine the best attribute for partitioning. Thus, the highest
ranking attribute, appearing in at least minsize number of expressions, implying that
the attribute has a sufficient discriminating power, is chosen for the space partitioning
phase. Essentially, this process identifies the next highest ranking dimension, only as
the need arises, to segregate expressions into smaller groups based on a high-ranking
attribute in order to prune the search space more effectively while coping with the
curse of dimensionality.

Upon successful selection of an attri for space partitioning, a new p-node for attri
is added to the parent of the overflowing lj-node, and the set of expressions in the

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:11

(a) Partition directory (b) Generic clustering directory

Fig. 2. The BE-Tree directories.

lj-node is divided based on whether or not they have a predicate defined on attri. The
partitioning procedure is repeatedly applied to the lj-node to keep its size below max j

cap.
The need for minsize is to avoid ineffective partitioning. For instance, if none of the

expressions in an lj-node have a predicate on a common attribute, then there is no
computational incentive to form a partition. Therefore, a natural problem that might
arise in the space partitioning for any given lj-node is the handling of scenarios for
which no candidate attribute exists with size larger than minsize. For such cases, we
introduce the notion of an extended lj-node in which the size of the lj-node, max j

cap, is
increased by a constant factor maxcap such that max j

cap = max j
cap+maxcap. Thus, in order to

support dynamic expansion and contraction of the leaf node size, after every successful
partitioning, the li-node capacity is reevaluated as follows:

max j
cap =

⎧⎨
⎩

⌈
|lj -node|
maxcap

⌉
× maxcap, if |lj-node| > 0

maxcap, otherwise.

(9)

Another subtle point in the space partitioning is how to guide the attribute selec-
tion such that (1) it guarantees that subsequent space partitioning on lower levels of
BE-Tree do not ineffectively cycle over a single attri (2) it enables dynamic insertions
and deletions without performance deterioration. To achieve these properties, we must
ensure that in any path from the root to a leaf node, each attri is selected at most once
and that a deterministic clustering is employed after each partitioning (cf. Section 4.3).
Moreover, we show in Section 4.3, the attribute selection restriction is not a limitation;
in fact, we prove that it is sufficient to pick each attri at most once yet fully exploiting
the domain of attri because when attri is selected, then reselecting it at a lower level
of the tree provides no additional benefit.

Moreover, it is evident that the number of partitions for each c-node grows linearly
in the dimensionality of space. Since each edge from a c-node leading to a p-node is
uniquely identified by a single attribute, we can employ a hash table over all edges
leaving the node, potentially scaling BE-Tree to thousands of dimensions. The inner
working of the partition directory is shown in Figure 2(a).

Finally, as the split operator is required to eliminate overflowing l-nodes, similarly,
a merge operator is necessary to eliminate underflowing l-nodes. If an l-node is under-
flowing, then its contents are either merged with its grandparent’s l-node or reinserted
into BE-Tree. The latter approach is preferred because it provides an opportunity to
avoid deterioration of BE-Tree. In any case, if an l-node is empty and its c-node has no

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:12 M. Sadoghi and H.-A. Jacobsen

other children, then the l-node is removed. This node removal naturally propagates
upward removing any nonleaf nodes with no outgoing edges.

4.3. Space Clustering

Our proposed space partitioning reduces the problem of high-dimensional indexing into
one-dimensional interval indexing. Interval indexing is addressed in our space clus-
tering phase, conceptually a local adjusting mechanism. The key insight of the space
clustering, and ultimately of BE-Tree, is a deterministic clustering policy to group over-
lapping expressions (into regions) and a deterministic policy to alternate between the
space partitioning and the space clustering. The absence of a predictable policy gives
rise to the dilemma of whether to further pursue the space clustering or to switch back
to the space partitioning. Besides, once a region is partitioned, that region can no longer
be split without running into the cascading split problem [Freeston 1995]: an unpre-
dictable chain reaction that propagates downwards, potentially effecting each node at
every level of the tree including the leaf nodes. Thus, a deterministic clustering policy
that is influenced by the insertion sequence is either prone to ineffective regions that do
not take advantage of the dimension selectivity to effectively prune the search space or
prone to suffer from substantial performance overhead due to the cascading split prob-
lem. Therefore, to achieve determinism in our space clustering, while supporting dy-
namic insertion and deletion, our structure must be independent of insertion sequence.

To address these challenges, we propose a grid-based approach, with unique split-
ting and merging policies, to build the clustering directory in BE-Tree. The clustering
directory is a hierarchical structure that organizes the space into sets of expressions by
recursively cutting the space in halves. A key feature of this grid-based clustering is a
forced split rule that (1) avoids the cascading split problem and that (2) enables deter-
ministic clustering and partition-clustering alteration strategies that are independent
of the insertion sequence. To describe the dynamics of our clustering directory, first, we
formally define a few concepts.

Definition 4.1. A bucket represents an interval boundary (range of values) over attri.

An expression is assigned to a bucket over attri only if the set of values defined
by the expression’s predicate on attri is covered by that bucket; for brevity, we say
an expression is assigned to a bucket if the expression is enclosed by that bucket.
Furthermore, a bucket has a minimal interval boundary which is a best-effort-smallest
interval that encloses all of its expressions. Each bucket is associated with exactly one
c-node in BE-Tree, which is responsible for storing and maintaining information about
the bucket’s assigned expressions. We further distinguish among four types of buckets.

Definition 4.2. An open bucket is a bucket with a not yet partitioned c-node.

Definition 4.3. A leaf bucket is a bucket that has no children (a bucket that has not
been split).

Definition 4.4. A discrete bucket is an atomic bucket that cannot further be split. A
discrete bucket is also a leaf bucket, but the reverse direction is not necessarily true.

Definition 4.5. A home bucket is the smallest possible bucket that encloses an ex-
pression.

Essentially the clustering directory is constructed based on the following three rules
to avoid the cascading split problem and to achieve the deterministic properties of
BE-Tree.

Rule 1. An expression is always inserted into the smallest bucket that encloses it
(insertion rule).

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:13

Rule 2. A nondiscrete bucket is always split before its c-node switches to the space
partitioning (forced split rule).

Rule 3. An underflowing leaf bucket is merged with its parent only if the parent is
an open bucket (merge rule).

The cascading split problem is avoided, first, due to the forced split rule because a
bucket is always split before it is partitioned and, second, due to the insertion and merge
rules because both current and future expressions are always placed in the smallest
bucket that encloses them. Therefore, the partitioned c-node always remains the home
bucket to all of its expressions. As a result, there is no benefit or need to further split
a bucket that is the home to all of its expressions. This home bucket’s uniqueness
property is achieved through a rigorous splitting policy that deterministically cuts the
space in half independent of the insertion sequence such that each expression could
uniquely be associated to a home bucket.

The deterministic clustering is achieved through a grid-based organization of space in
which each overflowing bucket is split in halves. The deterministic partition-clustering
alteration is also achieved through the forced split rule which always enforces the
split of nonatomic buckets before initiating the space partitioning. Thus, the space
partitioning is always applied to expressions that are residing in their home bucket such
that if the space clustering is further pursed, these expressions are unaffected by it.

In short, the deterministic and no split cascading properties of BE-Tree are obtained
by satisfying the below specified BE-Tree invariance. A complete proof of BE-Tree’s in-
variance is presented in Section C of the electronic appendix. Most importantly, these
desired properties are possible only due to the existence of an atomic bucket, which
itself is possible only due to the underlying discrete domain property.

INVARIANCE. Every expression always resides in the smallest bucket that encloses it,
and the c-node of a nonatomic leaf bucket is never partitioned.

Therefore, the key result with respect to BE-Tree’s invariance property, which is
proven in Section C of the electronic appendix, can be summarized as follows.

THEOREM 4.6. BE-Tree’s two-phase space-cutting (space partitioning and clustering)
is always safe and always satisfies the BE-Tree invariance.

Subsequently, we present our unique clustering directory structure. We also propose
a predicate transformation, which converts our expressive set of operators into an
interval boundary that is compatible with the clustering directory. Finally, we present
a set of directory optimization including a specialized clustering and a hybrid clustering
directory. The specialized clustering targets a restricted set of operators, and the hybrid
clustering utilizes both the generic and the specialized clustering directories to further
improve the matching time.

4.4. Space Clustering Structures

Space Clustering Structure. The main guiding principles of the BE-Tree space cluster-
ing are the insertion and the forced split rules. Both are used to dynamically construct
BE-Tree as follows. The clustering directory starts with an empty top-level bucket which
spans the entire domain for attri. Once the leaf node associated to the top-level bucket
overflows, the bucket is split in half resulting in the creation of two new child buckets;
each child bucket is also assigned a new c-node and l-node. Subsequently, expressions
in the overflowed leaf node that are enclosed by either of the two child buckets are
moved accordingly. This process is recursively applied until either an atomic bucket
is reached or every bucket’s c-node has its lj-node below max j

cap. Finally, an overflow-
ing non-leaf or an atomic bucket is handled by switching to the partitioning mode. A
snapshot of the clustering directory is shown in Figure 2(b).

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:14 M. Sadoghi and H.-A. Jacobsen

Table I. Operator Transformations

Operator Interval-based
i < v1 [vmin, v1 − 1]
i ≤ v1 [vmin, v1]
i = v1 [v1, v1]
i �= v1 [vmin, vmax]
i > v1 [v1 + 1, vmax]
i ≥ v1 [v1, vmax]

i ∈ {v1, . . . , vk} [v1, vk]
i /∈ {v1, . . . , vk} [vmin, vmax]

i BETWEEN v1, v2 [v1, v2]

In summary, the two-phase space-cutting begins with the space partitioning followed
by a sequence of space clusterings until a safe point (no split cascading), that is, a
non-leaf or an atomic bucket, is reached at which point a fresh instance of the two-
phase space-cutting, starting with the space partitioning, begins. Also, as explained
in Section 4.2, each attribute is selected at most once in any path along the root of
BE-Tree to a leaf node because switching back to the space partitioning occurs only at
a safe point, in which the overflowing leaf node, which is subjected to partitioning,
is associated with a home bucket, and a further clustering is no longer beneficial. In
other words, once an attribute is chosen, before switching to the partitioning mode, the
space clustering strategy will exploit the entire space to fully leverage the dimension
selectivity independent of the insertion sequence.

The clustering directory supports indexing one-dimensional intervals. However,
our predicate language supports a richer set of predicates. In Table I, we show
the conversion of predicates with different types of operators into one-dimensional
intervals, where vmin and vmax are the smallest and the largest possible values in the
domain, and {v1, . . . , vk} is sorted in ascending order. All predicates transformations
are simple algebraic conversions except for the (�=, /∈,∈) operators. A predicate
P(attri ,�=,v1)

j (x) implies that every value in the domain of attri is acceptable except for v1.
Therefore, under the uniform distribution assumption, the predicate Pj(x) is satisfied
with a high probability by an event expression having a predicate on attri. This
observation supports the transformation of the �= operator into a one-dimensional
interval [vmin, vmax]. This transformation results in an early pruning of expressions
with a predicate on attri during the matching of an event that does not have any
predicate defined on attri. This pruning strategy is especially effective because the
number of predicates per expression is on the order of tens while the number of space
dimensions is on the order of thousands. Likewise, the /∈ operator is a generalization
of the �= operator, which filters out a set of values from the domain instead of a single
value. Thus, by converting /∈ to an interval that spans the entire domain, again, we are
imposing a filtering strategy to effectively reduce the search space. Finally, applying
a similar conversion to the ∈ operator results in a further improved filtering strategy
compared with the (�=, /∈) conversion because, now, the assigned interval is bounded
by the minimum and the maximum values in the predicate with the ∈ operator.

Specialized Space Clustering Structure. The key observation with regard to the
clustering directory is that if the predicate language is restricted to only (=, �=, /∈)
operators, then the clustering directory can be replaced with a hash table and a single
bucket that spans the entire domain range, as shown in Figure 3(a). The hash table
and the single filtering bucket trivially satisfy the invariance and the cluster directory
rules because every bucket in the hash table is a discrete bucket implying that every
bucket is always the home bucket for all the expressions that it is hosting. Similarly,
the single bucket stores all the expressions that are transformed into an expression

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:15

(a) Specialized clustering directory (b) Hybrid clustering directory

Fig. 3. The BE-Tree clustering directories.

that spans the entire domain, also making this bucket a home bucket for all of its
expressions. Hence, the space partitioning in the 2-layer hash-based cluster directory
also satisfies the BE-Tree invariance. In addition, the 2-layer clustering directory is
always two. Hence, the height of BE-Tree is at most 2k, that is, O(k), where k is the
maximum number of predicates in an expression.

Hybrid Space Clustering Structure. In this approach, we combine the idea of the
generic and the specialized clustering structures. Therefore, if the expression contains
an equality predicate, then it is pushed into a hashtable (specialized structure); other-
wise, it is pushed to the generic clustering structure, Figure 3(b).

4.5. BE-Tree Theoretical Analysis

BE-Tree Operations Time Complexity. The BE-Tree matching follows a typical tree
traversal operation in which starting from the root multiple paths of a tree may be
traversed until all relevant l-nodes are reached; the matching pseudocode is given in
Section 7.1. In contrast, for insertion, the tree traversal follows exactly one path, which
is explained in-depth in Section 7.2. The deletion operation is conceptually similar to
the matching operation and presented in Section B of the electronic appendix. Finally,
the update operation is a composite operation consisting of a deletion followed by an
insertion.

We also prove the time complexity of BE-Tree operations in Section E of the electronic
appendix. The summary of these results is presented as follows.

THEOREM 4.7. The cost of BE-Tree insertion is bounded by O(k log N).

THEOREM 4.8. The BE-Tree matching (searching) algorithm is a multipath traversal
operation.

THEOREM 4.9. The deletion cost of augmented3 BE-Tree is bounded by O(k log N).

THEOREM 4.10. The cost of BE-Tree update is bounded by O(k log N).

BE-Tree Space Complexity. The height of BE-Tree is bounded by O(k log N), where k
is the maximum number of predicates per expression and N is the domain cardinality.
Thus, the height of BE-Tree, unlike for other tree-based matching structures such
as Gryphon [Aguilera et al. 1999], does not grow in the number of subscriptions

3For detailed description of required BE-Tree augmentation please refer to Section E of the electronic appendix.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:16 M. Sadoghi and H.-A. Jacobsen

avoiding memory- and performance-detrimental tree degeneration; the complete proof
is presented in Section D of the electronic appendix.

THEOREM 4.11. The height of BE-Tree is bounded by O(k log N).

5. BE-TREE SELF-ADJUSTMENT

BE-Tree self-adjustment is based on a cost-based ranking function and adaptation poli-
cies that utilize this ranking function.

5.1. Cost-Based Ranking Function

BE-Tree’s ranking objective directly reduces the matching cost as opposed to a ranking
that is founded solely on popularity measures and, consequently, biased towards ei-
ther the least or the most popular key [Fabret et al. 2001], which is a deviation from
the actual index objective. Our BE-Tree’s ranking objective, which directly reduces the
matching cost, is formulated based on the notion of false candidates.

Definition 5.1. False candidates are the expressions (subscriptions) retrieved that
are not matched by an input expression (event).

We formalize BE-Tree’s ranking objective based on the matching cost as follows. The
matching cost is defined as the total number of predicate evaluations broken down
into minimizing false candidate computations and minimizing true candidate compu-
tations. The false candidate computation is the total number of predicate evaluations
until an unsatisfied predicate is reached which discards the prior computations along
the search path, therefore, penalizing multiple search paths of the tree that are dis-
carded eventually. Also, the false candidate computation tracks the total number of
predicates evaluated for each unsatisfied expression; therefore, penalizing keys that
produce many false candidates. The true candidate computation is the number of pred-
icate evaluations before reporting a set of expressions as matched, namely, promoting
the evaluation of the common predicate exactly once.

We define a ranking model for each node in BE-Tree using the proposed matching
cost. For an improved ranking accuracy, we also introduce the notion of covered and
subsumed predicates. The covered predicates are defined as all predicates Pl(x) in each
lj-node’s expressions such that there exists a Pi(x) ∈ keyj and Pattr

i = Pattr
l because

by the definition of the leaf node’s key, all the Pl(x) must be covered by Pi(x). However,
if Pi(x) and Pl(x) are also equivalent, that is, ∀x ∈ Dom(Pattr

i) Pi(x) ↔ Pl(x), then Pl(x)
is considered subsumed and not covered. Thus, subsumed predicates are preferred
because the covered predicates are approximate and must be re-evaluated at the leaf
level for each expression. The ranking model assigns a rank to each node ni using
the function Rank(ni) which is a combination of the Loss(ni) and Gain(lj) functions.
Loss(ni) computes for each node the false candidates generated over a window of m
events. Gain(lj) is defined for each lj-node, and it is the combination of the number
of subsumed and covered predicates for each of its expressions. Formally, Rank(ni),
Loss(ni), and Gain(lj) are defined as follows:

Rank(ni) =
{

(1 − α)Gain(ni) − αLoss(ni) if ni is a l-node(∑
nj∈des(ni) Rank(nj)

) − αLoss(ni) otherwise,
(10)

where 0 ≤ α ≤ 1.

Loss(ni) =
∑

e′∈windowm(ni)

discarded pred eval for e′

|windowm(ni)| . (11)

Gain(lj) = (1 − β)Gains(lj) + βGainc(lj), 0 ≤ β ≤ 1. (12)
Gains(lj) = # subsumed pred, Gainc(lj) = # covered pred. (13)

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:17

The proposed ranking model is simply generalized for splitting an overflowing node
lj-node using a new attri, and it is given by

Rank(li) = (1 − α)Gain(li) − αLoss(li), where 0 ≤ α ≤ 1, (14)

where Gain(li) is approximated by the number of expressions that have a predicate
on attri and Loss(li) is estimated by constructing a histogram in which Loss(li) is the
average bucket size in the histogram. Essentially, the average bucket size estimates
the selectivity of attri, meaning, in the worst case the number of false candidates
is equal to the average bucket size. Alternatively, in an optimistic approach Loss(li) is
initially set to zero to eliminate any histogram construction and to rely on the matching
feedback mechanism for adjusting the ranking, if necessary. This optimistic approach
initially estimates the popularity of attri as opposed to selectivity of attri. Based on
our experimental evaluation, the optimistic approach results in an improved matching
and insertion time.

Similarly, based on empirical evidence, this cost model can be further simplified
by setting both parameters α and β to 0.5; hence, giving equal weight to the Gain()
and Loss() functions and to the Gains() and Gainc() functions. This simplification is
possible because in the majority of our synthetic and real experiments the rate of false
candidates was sufficiently low such that altering the values of these parameters had
negligible influence on the overall BE-Tree matching rate. However, in certain special
settings, these two parameters could be invaluable, namely, to deal with fluctuations
in event stream or to model the effectiveness of subsumed vs. covered predicates.

In general, the parameter α can play an important role in order to smoothen sudden
spikes in the event stream or to adapt to a stream with high fluctuation rates. A low
value of α places smaller weight on recent changes captured by our Loss() function and
puts heavier weight on the subscription workload characteristics that are captured by
our Gain() function. In contrast, a high value of α, places larger weight on an event
stream and adapts to stream fluctuations. Alternatively, one can view the role of α as
adapting to either event workload (a high value of α) or subscription workload (a low
value of α.)

Our second parameter β is used to establish the effectiveness of subsumed and
covered predicates while observing the event stream. Initially, it is assumed that both
subsumed and covered predicates are equally effective (i.e., β = 0.5), meaning that a
covered predicate has a low rate of generating false candidates. However, if during the
matching process, it is observed that a covered predicate has a much higher rate of
generating false candidates, then the parameter β is tuned accordingly. For instance,
if on average, a covered predicate generates a false candidate at a rate of 80%, then β
is set to 0.1 in order to favor subsumed predicates accordingly.

β = 0.5 − φ

2
, (15)

where φ is the observed rate of false candidates for covered predicates. The effectiveness
(and dynamic tunning) of the β parameter is studied in Section 8.6.12.

5.2. Adaptation Policies

In BE-Tree, three strategies are considered to utilize the cost-based ranking function and
to further avoid tree degeneration: recycling l-nodes, reinserting Boolean expressions,
and exploration vs. exploitation.

Recycling l-nodes is BE-Tree’s main self-adjusting policy that monitors each node over
a frequency window, freqwindow, of the number of insertion, deletion, and matching
operations. If at the end of each freqwindow interval for each node, the rank of a node
drops below the threshold, θ , then the entire contents of that node, including all of its
descendant leaf nodes (if any), are removed and reinserted into BE-Tree.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:18 M. Sadoghi and H.-A. Jacobsen

Reinserting Boolean Expression is exercised prior to invoking the space clustering
and the space partitioning. Reinsertion is geared towards adapting BE-Tree to changes
in the subscription workload. This policy targets leaf nodes by randomly selecting a
subset of a leaf node content, driven by the ratioins parameter, and it reinserts the
selected elements.

Exploration vs. Exploitation is a self-adjusting policy that is triggered when a new
expression is inserted in BE-Tree. At every level of BE-Tree, an attribute from the expres-
sion is selected such that with probability ratioexp the selected attribute is ranked the
highest in the current level (exploitation) otherwise the selected attribute is randomly
chosen (exploration). This active policy enables exploring the entire space while benefit-
ing from existing statistics and avoids making decisions based only on past selections.

6. BE-TREE OPTIMIZATIONS

In this section, we investigate BE-Tree’s execution model, in order to identify key oppor-
tunities to further accelerate the matching computation. First, we present a lazy and
a bitmap-based Boolean predicate evaluation. The main focus of the lazy evaluation
technique is to ensure exactly-once evaluation of every distinct predicate. On the other
hand, the bitmap technique, at the high-level, exploits predicate interrelationships
(i.e., predicate covering) and guarantees exactly-once evaluation of distinct predicates,
and at the low-level, it minimizes storage through an efficient bitmap representation
and speeds up the computation using low-level bitwise operations and preserves cache
locality. Second, we introduce a Bloom filtering strategy to minimize false candidate
evaluation at BE-Tree’s leaf level.

6.1. Lazy and Bitmap-Based Predicate Evaluations

One of the main goals of BE-Tree, in addition to search space pruning, is to minimize the
true candidate computations, that is, the evaluation (and the encounter) of common
predicates exactly once. BE-Tree’s structure and cost-function are designed to attain
this objective. We generalize the scope of this objective by also ensuring that each
distinct predicate is always evaluated exactly once; however, we generalized this
exactly-once objective from a different angle. Conceptually in this new paradigm, as
we traverse BE-Tree for a given event, we also maintain an efficient structure (with
respect to both time and space) to store the evaluation result (True or False) of each
distinct predicate in our subscription workload. This structure is represented as a
bit-array, in which each bit indicates whether or not a distinct predicate has been
evaluated to True (or False). Exploiting a bit-array not only provides fast read/write
access to predicate evaluation results, but also its compact representation, as was
observed in most workloads in our experiments, can be pinned entirely in modern
processor L2 cache, which significantly reduces the number of cache-misses.

To this end, we propose two different techniques for evaluating predicates using a
predicate bit-array. Our fist technique, referred to as lazy predicate evaluation, takes a
passive approach such that before evaluating a predicate, first, it determines whether
or not the predicate has already been evaluated for the current event; if not, then the
predicate is evaluated, and the corresponding bit in the predicate bit-array structure
is flipped to reflect the predicate evaluation result.

To be precise, we actually, maintain two bit-arrays, namely, Pass Bit-array and Fail
Bit-array, to maintain predicates that are evaluated to either True or False, respec-
tively. At the outset of matching a new event, both bit-arrays are initialized to zero.4

4It is important to note that bit-array initialization can utilize the information from the last seen event in
order to selectively reset only parts of the bit-arrays.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:19

Fig. 4. BE-Tree lazy predicate evaluation technique.

Before evaluating a predicate P, we first check if the bit corresponding to P is 0 in
both Pass/Fail Bit-arrays, that is, the predicate P has not been evaluated previously.
If the corresponding bit in Pass Bit-array is 1, then it implies that the predicate was
evaluated to True for the current event; similarly, if the bit in the Fail Bit-array is 1,
then we can infer that the predicate P is False. Finally, if the predicate P has not been
evaluated previously, then P is evaluated, and the result is reflected either in Pass
or Fail bit-array accordingly. This procedure yields the following invariance regarding
Pass/Fail bit-arrays.

INVARIANCE 1. For each distinct predicate P, either both bits in Pass/False Bit-arrays
are 0 or exactly one bit is set to 1.

The lazy predicate evaluation technique is depicted in Figure 4, in which each sub-
scription’s predicate in BE-Tree’s leaf nodes is associated with the predicate bit-arrays.
In short, not only the lazy predicate evaluation achieves execution of every predicate
exactly once and improves cache-locality but also supports subscription insertions, in
which the new subscriptions are permitted to have distinct predicates not seen previ-
ously. The new distinct predicates are appended to the end of the bit-arrays. In addition,
subscription deletions, which could potentially trigger removal of distinct predicates
can be achieved by maintaining an additional supporting structure, Predicate Count
Array, such that for each distinct predicate P, it stores the number of subscriptions that
contain predicate P. Once a predicate becomes an orphan, then the predicate is marked
as deleted (as shown in Figure 4). The deleted space is either used to accommodate new
distinct predicates or reclaimed periodically through a standard defragmentation (or
compacting) procedure. Notably, defragmentation can be done concurrently with event
matching, during which the matching solely relies on BE-Tree and does not leverage the
lazy predicate evaluation.

Our second predicate evaluation technique, referred to as bitmap-based predicate
evaluation, pushes the limit of lazy predicate evaluation by also incorporating the
predicate interrelationships (e.g., predicate covering) through a novel precomputation
and storing of predicate coverings, which is achieved partly due to the exploitation of
the discrete and finite domain properties. We propose a bitmap structure over the set
of all distinct predicates such that for any given attribute-value pair, essentially an
equality predicate Pattribute,=,value, we precompute and store (designed for an efficient
read access in mind) in our bitmap index all distinct predicates that are relevant for

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:20 M. Sadoghi and H.-A. Jacobsen

Fig. 5. BE-Tree bitmap-based predicate evaluation technique.

P5. Therefore, instead of individually evaluating every relevant distinct predicate for a
given event’s equality predicate, we precompute the evaluation results of every distinct
predicate that is affected by any given event’s predicate. The set of affected predicates
by the equality predicate P, denoted by �P , is defined as follows

�P = {
Pi| ∀Pattr,opt,val

i (x) ∈ �, Pattr = Pattr
i , ∃x ∈ Dom(Pattr)

}
, (16)

where � is the set of all distinct predicates.
Consequently, the set of all distinct predicates that are not affected by P are given

by �P = � − �P . The bitmap is constructed by determining the sets �P and �P for
each P, that is, P is formed by enumerating over the discrete values of each attribute
(a dimension in the space) in order to construct an equality predicate P. Next, we
evaluate each predicate in �P for a given P and store the results in the bitmap. Also
the set �P is automatically filled with 0 because none of the predicates in the set �P

are affected by P. The overall structure of the bitmap and its organization of �P and
�P are illustrated in Figure 5.

The most striking feature of our proposed bitmap is its highly sparse matrix structure
because the set of bits represented by �P are all zero, and given the high-dimensionality
of our problem space, we have |�P | � |�P |. Thus, if the corresponding bits are re-
ordered by clustering �P and �P (as shown in Figure 5), we can achieve an effective
space-reduction in our bitmap. This bitmap space saving ratio |�P |

|� P | , through reordering
of the bits in the bitmap, is directly proportional to the number of attributes n if the
predicates are sorted based on their attributes and given by

n ∝ |�P |
|�P | . (17)

This ratio is further influenced by the distribution of predicates over each attribute.
For instance, for certain domain values value over attribute attr, there may be no pred-
icate such that the value falls in any predicate’s range of values; thereby, implying that

5Without the loss of generality, we focus our discussion on events consisting of only equality predicates,
which can easily be extended to support events with range predicates as required in our extended matching
semantics by enumerating over the domain of range predicates.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:21

the set �Pattr,=,x

consists of only zero bits. Such a distribution of predicates results in
further space reduction because neither �Pattr,=,x

nor �Pattr,=,x need to be stored explicitly
in the bitmap. This reduction in space also improves, as a byproduct, the bitwise oper-
ations during the matching process. In addition, there are potential research opportu-
nities to develop a more effective bit reordering techniques (i.e., a predicate topological
sort order) to further improve the space saving ratio. In particular, the minimum num-
ber of predicates that must be maintained for each P (a lower-bound on size of set �P)
are those distinct predicates that are satisfied by P. This minimum set is defined as

�P
min = {

Pi| ∀Pattr,opt,val
i (x) ∈ �, Pattr = Pattr

i , ∃x ∈ Dom(Pattr), P(x) ∧ Pi(x)
}
, (18)

During the BE-Tree matching process, upon arrival of a new event e, the precomputed
bitmap index is utilized to efficiently compute all distinct predicates that are satisfied
by the incoming event. This is carried out by a bit-wise OR-operation of relevant rows
in our bitmap index in order to fully construct Result Bit-array: a bit-array in which
each bit corresponds to a distinct predicate, where a bit with value 1 signifies that the
corresponding predicate is True; otherwise False. The Result Bit-array is constructed
as follows:

Result Bit-array =
⋃
Pi∈e

{�Pi , �Pi }, (19)

where no actual operation is required to account for �Pi sets.
The Result Bit-array can entirely be pinned in cached as long as the subscription

workload contains only in order of few millions of distinct predicates, for which only few
mega bytes of cache is required6. However, the potential source of cache misses is not
limited to Result Bit-array accesses, in fact, another BE-Tree’s internal data structure
that generates cache misses (in addition, to general pointer chasing of any tree struc-
ture) is the representation of leaf pages content. In BE-Tree with bitmap-based evalua-
tion since each subscription in the leaf page requires only to keep an array of references
to Result Bit-array, then it is feasible to store all subscriptions in the leaf page as cache-
conscious block of 2-dimensional array of references. Moreover, since in BE-Tree, the
number of subscriptions in each leaf page is limited to only tens or hundreds of subscrip-
tion (cf. Table VI), then this 2-dimensional subscription representation could also be fit-
ted in the processor cache; thus, substantially reducing the number of cache misses dur-
ing subscription evaluations at the leaf level and improving the overall matching time.

In summary, the lazy predicate evaluation technique is most suitable for settings
in which many of the expected subscription insertions (or updates) contain unseen
distinct predicates while the bitmap-based predicate evaluation technique is ideal
for more stable workloads. Therefore, a hybrid mechanism can be adopted in which
unseen distinct predicates can be maintained through the lazy predicate evaluation
while the stable distinct predicates are maintained through the bitmap technique.
Therefore, periodically, the two sets of distinct predicates are merged and the bitmap
is reconstructed again. Most importantly, merging the two distinct predicate sets from
both the lazy and the bitmap structures can be carried out concurrently as BE-Tree
continues to match new incoming events.

6.2. Bloom Filtering Optimization

Our final optimization is designed to reduce the number of false candidates at the
BE-Tree’s leaf nodes level, which is motivated by a simple observation that subscription
si is a possible candidate if at the very least, the set of attributes on which si has defined

6The processor used in our experiment has two shared 6144KB cache block size.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:22 M. Sadoghi and H.-A. Jacobsen

ALGORITHM 1: MatchBETree(event, cnode, matchedSub)
1: matchedSub ← CheckSub(cnode.lnode)

{Iterate through event’s predicates}
2: for i ← 1 to NumOfPred(event) do
3: attr ← event.pred[i].attr

{Check the c-node’s p-directory (hashtable) for attr}
4: pnode ← SearchPDir(attr, cnode.pdir)

{If attr exists in the p-directory}
5: if pnode �= NULL then
6: SearchCDir(event, pnode.cdir, matchedSub)

ALGORITHM 2: SearchCDir(event, cdir, matchedSub)
1: MatchBETree(event, cdir.cnode, matchedSub)
2: if IsEnclosed(event, cdir.lChild) then
3: SearchCDir(event, cdir.lChild, matchedSub)
4: else if IsEnclosed(event, cdir.rChild) then
5: SearchCDir(event, cdir.rChild, matchedSub)

a predicate explicitly is a subset of attributes appearing in a given event e; formally
expressed as

∀Pattr,opt,val
q (x) ∈ si, ∃Pattr,opt,val

o (x) ∈ e, Pattr
q = Pattr

o . (20)
This necessary condition C for testing set membership can efficiently be evaluated

(approximately) if both the subscription si and the event e have a (lossy) compact
encoding of all the attributes that appear in si and e, respectively. To attain this compact
encoding, we encode the set of attributes using a Bloom filter representation as follows

si
bloom =

∨
Pq∈si

(
sdbm hash

(
Pattr

q

)
mod bloom size

)
, (21)

where ∨ is a bitwise OR-operation, sdbm hash is a hash function, and bloom size is
the Bloom filter size. In particular, we utilize the well-known sdbm hash function7, and
we experimented with various choice of bloom size ranging from 16-64 bits in order
to investigate the false positive rate of our Bloom filter encoding (cf. Section 8). The
Bloom filter for the event e is computed in a similar manner.

Therefore, during the matching process, the necessary matching condition is (ap-
proximately) satisfied iff the bitwise AND-operation (∧) of the subscription’s and the
event’s Bloom filters are equal to the subscription’s Bloom filter.

C(e, si) = True � ebloom ∧ si
bloom = si

bloom. (22)

7. BE-TREE IMPLEMENTATION

Next, we provide an in-depth explanation, together with pseudocode, for the two main
operations of BE-Tree, namely, matching and insertion. Furthermore, for the ease of
presentation, without the loss of generality, we focus on matching with stabbing sub-
scription semantics in which event expressions consist of only equality predicates (=).

7.1. Matching Pseudocode

Event matching consists of two routines: (1) MatchBETree (Algorithm 6.2) which
checks subscriptions in a leaf node and traverses through BE-Tree’s p-directory and
(2) SearchCDir (Algorithm 6.2) which traverses through BE-Tree’s c-directory.

7This algorithm was created for the sdbm (a public-domain reimplementation of ndbm) database library. The
Bloom filter implementation used is found under http://en.literateprograms.org/Bloom filter (C).

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:23

ALGORITHM 3: InsertBETree(sub, cnode, cdir)
1: {Find attr with max score not yet used for partitioning}
2: if cnode.pdir �= NULL then
3: for i = 1 to NumOfPred(sub) do
4: if !IsUsed(sub.pred[i]) then
5: attr ← sub.pred[i].attr
6: pnode ← SearchPDir(attr, cnode.pdir)
7: if pnode �= NULL then
8: f oundPartition = true;
9: if maxScore < pnode.score then
10: maxPnode ← pnode
11: maxScore ← pnode.score

{if no partitioning found then insert into the l-node}
12: if ! f oundPartition then
13: Insert(sub, cnode.lnode)

{if c-node is the root then partition; otherwise cluster}
14: if isRoot(cnode) then
15: SpacePartitioning(cnode)
16: else
17: SpaceClustering(cdir)
18: else
19: maxCdir ← InsertCDir(sub, maxPnode.cdir)
20: InsertBETree(sub, maxCdir.cnode, maxCdir)
21: UpdatePartitionScore(maxPnode)

MatchBETree algorithm takes as inputs: an event, a c-node (BE-Tree’s root initially), and
a list to store the matched subscriptions. The algorithm, first, checks all subscriptions
in the c-node’s leaf to find the matching subscriptions (Line 1). Second, for every attri in
the event’s predicates, it searches the c-node’s p-directory (Line 4). Lastly, the algorithm
calls SearchCDir on all relevant p-nodes (Line 6).

SearchCDir takes as inputs: an event, c-directory, and a list to store the matched
subscriptions. The algorithm is as follows: it calls MatchBETree on the c-node of the
current c-directory (Line 1), and it recursively calls SearchCDir on the bucket’s left
child if the left child encloses the event (Line 3) and on the bucket’s right child if the
right child encloses the event (Line 5). In order to support more expressive matching
semantics and predicate operators only the IsEnclosed function (in Algorithm 6.2)
algorithm must be changed accordingly.

7.2. Insertion Pseudocode

Unlike matching, insertion is rather involved because it also manages the overall dy-
namics of BE-Tree, that is, the space partitioning and the space clustering. To insert,
BE-Tree’s root and a subscription is passed to the InsertBETree (Algorithm 7.2) that
attempts to find an l-node with the highest score that encloses the subscription. Es-
sentially the insertion is done recursively in two stages. Initially, the p-directory is
searched for every unused attri in the subscription, and the attrmax with highest p-
node score is selected (Lines 2–11); an unused attri is one that has not been selected at
a higher level of BE-Tree by the InsertBETree. Subsequently, if no such attrmax is found,
then the subscription is inserted into the l-node of the current c-node (Line 13). How-
ever, if an attrmax is found, then the subscription is pushed down to its corresponding
p-node (Line 19).

On the one hand, when attrmax is found (Line 19), the c-directory of the corresponding
p-node is searched for the smallest possible c-node that encloses the subscription, the
search is done through InsertCDir (Algorithm 7.2). Upon choosing the smallest c-node, the

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:24 M. Sadoghi and H.-A. Jacobsen

ALGORITHM 4: InsertCDir(sub, cdir)
1: if IsLeaf(cdir) then
2: return cdir
3: else
4: if IsEnclosed(sub, cdir.lChild) then
5: return InsertCDir(sub, cdir.lChild)
6: else if IsEnclosed(sub, cdir.rChild) then
7: return InsertCDir(sub, cdir.rChild)
8: return cdir

ALGORITHM 5: SpacePartitioning(cnode)
1: lnode ← cnode.lnode
2: while IsOverflowed(lnode) do
3: attr ← GetNextHighestScoreUnusedAttr(lnode)

{Create new partition for the next highest score attr}
4: pnode ← CreatePDir(attr, cnode.pdir)

{Move all the subscriptions with predicate on attr}
5: for sub ∈ lnode do
6: if sub has attr then
7: cdir ← InsertCDir(sub, pnode.cdir)
8: Move(sub, lnode, cdir.cnode.lnode)
9: SpaceClustering(pnode.cdir)
10: UpdateClusterCapacity(lnode)

ALGORITHM 6: SpaceClustering(cdir)
1: lnode ← cdir.cnode.lnode
2: if !isOverflowed(lnode) then
3: return
4: if !IsLeaf(cdir) or IsAtomic(cdir) then
5: SpacePartitioning(cdir.cnode)
6: else
7: cdir.lChild ← [cdir.startBound, cdir.endBound/2]
8: cdir.rChild ← [cdir.endBound/2, cdir.endBound]
9: for sub ∈ lnode do
10: if IsEnclosed(sub, cdir.lChild) then
11: Move(sub, lnode, cdir.lChild.cnode.lnode)
12: else if IsEnclosed(sub, cdir.rChild) then
13: Move(sub, lnode, cdir.rChild.cnode.lnode)
14: SpacePartitioning(cdir.cnode)
15: SpaceClustering(cdir.lChild)
16: SpaceClustering(cdir.rChild)
17: UpdateClusterCapacity(lnode)

subscription advances to the next level of BE-Tree, and the routine InsertBETree is recur-
sively called on the new c-node. After the recursive call, the function UpdatePartitionScore
(Line 21) is invoked, which implements our proposed cost-based ranking function based
on Equation (10) or its simpler form given by Equation (14).

On the other hand, when no attrmax is found (Line 13), the l-node at the current
level is declared as the best l-node to hold the new subscription so that InsertBETree’s
recursion reaches the base case and terminates; however, after the insertion into the
l-node, the node may overflow, which, in turn, triggers BE-Tree’s two-phase space-cutting
technique: partitioning and clustering.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:25

Fig. 6. A concrete example.

In particular, if the chosen l-node is at the root level, in which no partitioning or
clustering has yet taken place, then the space partitioning is invoked first (Line 15)
because the space clustering is feasible only after the space is partitioned; otherwise,
the space clustering is invoked (Line 17).

SpacePartitioning (Algorithm 7.2) proceeds as follows. It uses a scoring function (e.g.,
selectivity or popularity) to find an unused attribute with the highest ranking, attrmax,
that appears in predicates of the overflowing subscription set (Line 3); consequently,
a new p-node is created for the attrmax. Next, the algorithm iterates over all the
subscriptions in the overflowing l-node, and moves all subscriptions having a predicate
defined over attrmax into the c-directory of the attrmax ’s p-node (Lines 5–8). Lastly, the
space clustering is called on the c-directory to resolve any potential overflows resulting
from moving subscriptions (Line 9); the entire process is repeated until the l-node is no
longer overflowing. Lastly, by calling the function UpdateClusterCapacity (Line 10), the
cluster capacity is updated based on Equation (9).

SpaceClustering (Algorithm 7.2) is always invoked after the space is partitioned in or-
der to resolve any overflowing l-node by recursively cutting the space in half, and only
if the space clustering is unfeasible, then it switches back to the space partitioning. The
space clustering is unfeasible when an overflowing l-node is associated to a c-directory
bucket that is either a nonleaf bucket, in which further splitting does not reduce the
l-node size, or an atomic bucket, in which further splitting is not possible (Line 4). If
the space clustering is feasible, then the algorithm splits the current bucket directory
in half and moves subscriptions accordingly (Lines 7-13). Next the algorithm recur-
sively calls SpacePartitioning on the current bucket (Line 14) and calls SpaceClustering on
the current bucket’s left and right child (Lines 15-16). Lastly, by calling the function
UpdateClusterCapacity (Line 17), the cluster capacity is updated based on Equation (9).

7.3. Concrete Example

Next we present an example to further elucidate the insertion algorithm. The final
BE-Tree is shown in Figure 6.

Example. Initially, BE-Tree is empty. After inserting S1-S4, the root’s l-node overflows,
and based on InsertBETree (Line 15), the root is partitioned, and the attribute [a] is
selected as attrmax, and S1 and S4 are pushed down to the next level of BE-Tree. After
inserting S5-S6, another overflow occurs at the root, which results in selecting [d] as

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:26 M. Sadoghi and H.-A. Jacobsen

attrmax, and, similarly, S3, S5, and S6 are pushed down the tree. After inserting S7-S8,
both having predicates defined on [a], they are directed toward the l-node containing
S1 and S4 along the root’s p-node with value [a]. Consequently, this node will overflow,
and based on InsertBETree (Line 17), the l-node is clustered. Finally, the insertion of
S9 will overflow the top-level (nonleaf) c-directory, reachable through the root’s p-node
with value [a]; thereby, triggering the space partitioning and selecting [b] as the next
attrmax through SpaceClustering (Line 5).

8. EVALUATIONS

We present a comprehensive evaluation of BE-Tree using both synthetic and real
datasets. The experiments were carried on two Quad-core Intel Xeon X5450 processors
running at 3.00 GHz machine with 16GB of memory running CentOS 5.5 64bit. All
algorithms are implemented in C and compiled using gcc 4.1.2 with optimizations set
to O3.

8.1. Experiment Overview

We compare BE-Tree with several popular matching algorithms over a variety of con-
trolled experimental conditions: workload distribution, workload size, space dimension-
ality, average subscription and event size, dimension cardinality, predicate selectivity,
dimension selectivity, subscription expressiveness, and event matching probability. In
addition, we discuss the effectiveness of sequential BE-Tree in comparison of state-of-
the-art GPU parallel matching algorithm in Section F of the electronic appendix.

We also ran experiments to determine optimal choices for BE-Tree internal parame-
ters, cf. Section 8.5. The values used throughout our experiments are: maxcap ranging
from 5-160, minsize = 3, rankwindow for each node is 10% of expressions in the node’s
subtree, and θ = 0.

Once we establish the effectiveness of BE-Tree with respect to state-of-the-art ap-
proaches, we shift our focus in the experimental evaluation towards further improving
BE-Tree through lazy and bitmap-based predicate evaluations and the Bloom filter
optimization.

8.2. Datasets

8.2.1. Synthetic Dataset. One of the key challenges in generating synthetic datasets
with high-dimensions is the inability to control the matching probability. With no con-
trol mechanism, the matching probability would be virtually zero. To address this
concern, we developed a workload generation framework, BEGen8 workloads are gen-
erated in two steps: (1) a set of base expressions with only equality predicates are
generated, in which a predicate’s attribute is chosen based on either a uniform or a
Zipf distribution; (2) for each base expression eB, we generate a set of derived expres-
sions, ei, such that

∀Pq(x) ∈ ei, ∃Po(x) ∈ eB, Pattr
q = Pattr

o ,∀x Po(x) → Pq(x). (23)

Moreover, each predicate in a base expression is kept with probability Prpred in its
derived expressions, and each predicate in derived expressions is transformed with
probability Prtrans using one of the inferred predicate rules given in Table II. In our
synthetic experiments, base expressions model events, and derived expressions model
subscriptions. In addition, the probability Prpred and Prtrans are chosen such that with
a high probability, we avoid generating any duplicate subscriptions. Thus, if the av-
erage number of predicates per event is x and the average number of predicates per

8http://msrg.org/datasets/BEGen.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:27

Table II. Inferred Predicates from P(i,=,v∗)
j

i �= v1 where v1 �= v∗
i < v1 where v1 ≥ v∗
i > v1 where v1 ≤ v∗

i ∈ {v1, v2, . . . , vk} ∪ {v∗}
i /∈ {v1, v2, . . . , vk} − {v∗}

i BETWEEN v1, v2 where v1 ≤ v∗ and v2 ≥ v∗

Table III. Experiment Settings for Synthetic Datasets

W
or

kl
oa

d
S

iz
e

N
u

m
be

r
of

D
im

en
si

on
s

D
im

en
si

on
C

ar
di

n
al

it
y

P
re

di
ca

te
S

el
ec

ti
vi

ty

D
im

en
si

on
S

el
ec

ti
vi

ty

S
u

b/
E

ve
n

t
S

iz
e

%
E

qu
al

it
y

P
re

di
ca

te

M
at

ch
in

g
P

ro
ba

bi
li

ty

E
xt

en
de

d
M

at
ch

in
g

S
em

an
ti

cs

B
lo

om
F

il
te

r

Size 100K-1M 1M 100K 100K 100K 100K 1M 1M 100K-1M 100K-1M
Number of Dim 400 50-1400 400 400 400 400 400 400 400 400

Cardinality 48 48 48-150K 48 2-10 48 48 48 48 48
Avg. Sub Size 7 7 7 7 7 5-66 7 7 7 5

Avg. Event Size 15 15 15 15 15 13-81 15 15 15 7
Pred Range Size % 12 12 12 6-50 — 12 12 12 12 12

% Equality Pred 0.3 0.3 0.3 0.3 1.0 0.3 0.2-1.0 0.3 0.3 0.3
Op Class Med Med Med Med Min Med Med Lo-Hi Med Med

Match Prob. % 1 1 1 1 — 1 1 0.01-50 — —

Table IV. Levels of Expressiveness

OpClass Types of Operators
Minimum (=)

Low (=, ∈)
Medium (<, ≤, =, ≥, >, ∈, BETWEEN)

High (<, ≤, =, �=, ≥, >, ∈, /∈, BETWEEN)

subscriptions is y, we choose x and y such that
(x

y

)
is large enough such that dupli-

cate subscriptions are unlikely. Also, the probability Prtrans further injects variations
into the subscription workload. It is controlled by the ratio of equality vs. nonequality
predicates within each workload. For example, by tuning the number of generated base
expressions, we can control the matching probability for a given subscription workload.
For instance, to generate a workload size of 1, 000 with matching probability 1%, we
generate 100 base expressions and 10 derived expressions for each base expression.

In our evaluation, we assign up to 6 values for (∈, /∈), and on average, we use a pred-
icate range size of 12% of the domain size for the BETWEEN operator, and we randomly
pick a value for the remaining operators. The value of each parameter in our synthetic
workload is summarized in Table III, in which each column corresponds to a different
workload profile while each row corresponds to the actual value of the workload
parameters. Lastly, Table IV captures our four levels of operator expressiveness.

8.2.2. Real Dataset. In the absence of a standard benchmark for evaluating matching
algorithm with real data as part of the BEGen framework, we propose a generation
of real workloads from extracted public domain data. We focus on the data extracted
from the DBLP repository,9 which is also commonly used as benchmark in assessing

9Bibliographic information on major computer science publications.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:28 M. Sadoghi and H.-A. Jacobsen

Table V. Experiment Settings for Real Datasets

D
B

L
P

A
u

th
or

D
B

L
P

T
it

le

M
at

ch
in

g
P

ro
ba

bi
li

ty
(A

u
th

or
)

M
at

ch
in

g
P

ro
ba

bi
li

ty
(T

it
le

)

E
xt

en
de

d
M

at
ch

in
g

S
em

an
ti

cs
(A

u
th

or
)

E
xt

en
de

d
M

at
ch

in
g

S
em

an
ti

cs
(T

it
le

)

Size 100–760K 50–250K 400k 150 100–760K 50–250K
Number Dim 677 677 677 677 677 677
Cardinality 26 26 26 26 26 26

Avg. Sub Size 8 35 8 30 8 30
Avg. Event Size 8 35 16 43 8 30

Pred Range Size % — — 12 12 12 12
% Equality Pred — — 0.3 0.3 0.3 0.3

Op Class Min Min Lo-Hi Lo-Hi Med Med
Match Prob. % — — 0.01–50 0.01–50 — —

algorithms used in the data quality community. In particular, we use the proceeding
titles and author names as two sources of data extracted from DBLP.

We, first, use a deduplication technique to eliminate duplicate entries and to convert
the data into a set of q-grams. This conversion is based on tokenization of a string into a
set of q-grams (sequence of q consecutive characters). For example, a 3-gram tokeniza-
tion of “string” is given by {‘str’, ‘tri’, ‘rin’,‘ing’}. Second, we use a transformation to
convert each string from a collection of q-grams into a Boolean expressions. Therefore,
we model the collection of q-grams {‘str’, ‘tri’, ‘rin’, ‘ing’} by a set of equality predicates
as follows: [‘st’ = ‘r’, ‘tr’ = ‘i’,‘ri’=‘n’, and ‘in’=‘g’]. This 3-grams-based transformation
results in Boolean expressions in a space of 677 dimensions. For the real datasets,
we also carry out experiments in which we control the degree of matching probability
using the profile generation technique that was used in the synthetic datasets. Table V
summarizes various workloads generated using the real datasets.

8.3. Matching Algorithms

The algorithms in our comparison studies are (1) SCAN (a sequential scan of the sub-
scriptions), (2) SIFT 10 (the counting algorithm [Yan and Garcı́a-Molina 1994] enhanced
with the enumeration technique [Whang et al. 2009] to support range operators), (3)
k-ind (the CNF algorithm implemented over k-index [Whang et al. 2009]), (4) GR (the
Gryphon algorithm [Aguilera et al. 1999]), (5) ADGR (our Advanced Gryphon algorithm
[Aguilera et al. 1999]) which is constructed after applying our operator transformation
given in Table I, (6) P (the Propagation algorithm [Fabret et al. 2001]), (7) APP (the Access
Predicate Pruning algorithm [Farroukh et al. 2011] also enhanced with the enumeration
technique [Whang et al. 2009]), (8a) BE (our fully dynamic version of BE-Tree in which
the index is constructed by individually inserting each subscription, and (8b) BE-B (our
batching version of BE-Tree in which all subscriptions are known in advance resulting
in a better initial statistics to guide the space partitioning at the root level). Unlike
the construction of the dynamic BE-Tree, we have constructed k-index, the two versions
of Gryphon algorithms (ADGR and GR), and Propagation using a static workload in which
all subscriptions are known in advance.

10This counting algorithm is also employed in [Cugola and Margara 2012; Margara and Cugola 2013] for a
fast GPU implementation.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:29

In addition, we have implemented the specialized GR algorithm that supports only
equality predicates and the generic GR that supports arbitrary predicates [Aguilera
et al. 1999]; we have included all the Gryphon optimizations as well [Aguilera et al.
1999], that is, collapsing *-edges (do not care edges) and leveraging predicate covering
proposed in Aguilera et al. [1999] to build the Gryphon data structure. Moreover, after
applying our proposed predicate transformation in Table I, the predicate covering
in Aguilera et al. [1999] becomes substantially more effective as demonstrated in our
experimental evaluations.

In our experiments, we distinguish between four levels of predicate expressiveness
because not all algorithms can naturally support our expressive set of operators. In
particular, APP [Farroukh et al. 2011], SIFT [Yan and Garcı́a-Molina 1994], and k-index
[Whang et al. 2009] naturally support only a weak semantics for operators /∈ and �=
in which subscription predicates with inequality on attri are also matched by an input
event that does not define any predicate on attri; the common alternative semantic is to
consider a subscription as matched only if an event provides a value for all subscription
predicates with inequality (strong semantics). To support inequality operators with
the strong semantics, a default value must be added to both subscriptions’ inequality
predicate and the unspecified attributes in the event [Whang et al. 2009]. This scheme
results in an unacceptable performance as space dimensionality increases for the
strong semantics. Thus, we do not consider SIFT and k-index for the inequality (strong
semantics) experiments. Similarly, Propagation does not support inequality predicates
as access predicates and relies on a post processing step to resolve inequalities. Thus,
we do not consider Propagation in the inequality experiments either.

8.4. Experiment Organization

In our micro experiments, we study the BE-Tree’s internal parameters and their relation
to the overall performance of BE-Tree. Most importantly, we establish that the maximum
l-node capacity is the main parameter of BE-Tree and provide a systematic guideline
on how to adjust it. We then shift gears to focus on macro experiments in which an
extensive evaluation and comparison of BE-Tree with other related approaches are
conducted. Finally, we illustrate the effectiveness of BE-Tree’s self-adjustment under
changing workloads.

In our experiment, the main metric that distinguishes between various matching al-
gorithms is the matching time (i.e., matching response time). In particular, we compare
the matching time of BE-Tree with alternative algorithms A based on the following ratio:

% = MA − MBE-Tree

MA
(24)

where MA is the matching time of algorithm A. Therefore, in our discussion, we use
this ratio for comparison; for instance, BE-Tree improves over algorithm A by % or
BE-Tree reduces the matching time by %.

8.5. Micro Experiments

The most important parameter of BE-Tree is the maximum l-node capacity size, maxcap,
which triggers our two-phase space-cutting technique. In Figure 7 (and in Section F
of the electronic appendix), for various workloads with different matching probability,
the effect of varying the l-node capacity is shown. Although, there is a correlation
between the optimal value of maximum l-node capacity and the degree of the matching
probability, the effect is not significant. Thus, we conclude that BE-Tree is not highly
sensitive to the maximum l-node capacity parameter. The results of varying l-node
capacities are summarized in Table VI, which we use as a guiding principle throughout
our evaluation for choosing the optimal value with respect to the degree of matching

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:30 M. Sadoghi and H.-A. Jacobsen

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

0.01
0.1 1 3 5 9

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Match (%); Sub=1M; BE

5
10
20
40
80

160

(a) Unif: Med Exp

 8

 16

 32

 64

 128

0.01
0.1 1 3 5 9

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Match (%); Sub=1M; BE

5
10
20
40
80

160

(b) Zipf: Med Exp

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

0.01
0.1 1 3 5 9

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Match (%); Sub=400K; BE

5
10
20
40
80

160

(c) Author: Med Exp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

0.01
0.1 1 3 5 9

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Match (%); Sub=150K; BE

5
10
20
40
80

160

(d) Title: Med Exp

Fig. 7. Matching probability with different l-node capacities.

Table VI. Most Effective maxcap for
Different Matching Probabilities

maxcap

Match Prob < 1% 5
1% ≤ Match Prob < 10% 20

Match Prob ≥ 10% 160

probability. Another important factor is that the l-node capacity is a tunable parameter
which can be dynamically adjusted (increased or decreased) based on the matching
feedback to tune future executions of the two-phase space-cutting technique.

Other notable BE-Tree parameters are the base scoring function, the type of clustering
directory, and reinsertion. As we described in Section 5, for the base scoring function,
we used the optimistic popularity measure which resulted in a superior performance
in terms of construction time of BE-Tree while reducing the matching computation by
further exploiting commonality among subscriptions, the effect of the scoring function
is illustrated in Figure 8. Moreover, we considered three strategies for choosing the
clustering directory: hybrid clustering directory (Hy), hybrid clustering directory opti-
mized with equality predicate ranking (Hy-R), and generic clustering directory (Gen).
Our ranking optimization is an enforcement policy such that all subscriptions’ equality
predicates are first consumed by our two-phase space-cutting technique before con-
suming subscriptions’ nonequality predicates. The rational behind this improvement
is twofold: (1) motivated by our empirical evidence, for instance, Hy-R improved Hy
and Gen by up to 52% for the Zipf dataset (Figure 9(b) and improved Hy and Gen by up
to 72% for the title dataset (Figure 9(d) and (2) justified by utilizing fast hash access
specifically designed for equality predicates in our hybrid clustering directory. As a
result, for all experiments, we used a hybrid clustering directory with equality ranking
except for the experiments with expressive events in which a generic clustering direc-
tory has proven effective. Lastly, we used the adaptive policy and reinsertion policy
only for our dynamic experiment in which the reinsertion rate was 5%.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:31

 0.5

 1

 2

 4

 8

 16

 32

 64

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M; BE

POP
SEL

(a) Unif: Med Exp

 8

 16

 32

 64

 128

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M; BE

POP
SEL

(b) Zipf: Med Exp

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K; BE

POP
SEL

(c) Author: Med Exp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K; BE

POP
SEL

(d) Title: Med Exp

Fig. 8. Matching probability with different scoring functions.

 0.5

 1

 2

 4

 8

 16

 32

 64

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M; BE

Hy
Hy-R
Gen

(a) Unif: Med Exp

 8

 16

 32

 64

 128

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M; BE

Hy
Hy-R
Gen

(b) Zipf: Med Exp

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K; BE

Hy
Hy-R
Gen

(c) Author: Med Exp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K; BE

Hy
Hy-R
Gen

(d) Title: Med Exp

Fig. 9. Matching probability with different clustering directory types.

As part of our micro experiments, we also evaluate BE-Tree’s construction time. In
particular, the construction time of the dynamic BE-Tree, for the largest workload of up
to one million subscriptions, was under 5 seconds in our experiments. BE-Tree’s average
construction time and index size, for the representative datasets in our framework, are
summarized in Table VII.

8.6. Macro Experiments

In this section, we compare BE-Tree with several popular matching algorithms over
a variety of controlled experimental conditions: workload distribution, workload size,

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:32 M. Sadoghi and H.-A. Jacobsen

Table VII. BE-Tree Construction Time & Index Size

Data Sets Construction Time (second) Index Size (MB)
Unif (1M) 2.37 68
Zipf (1M) 2.03 67
Author (760K) 3.24 139
Title (250K) 2.18 69

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Workload Size

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)
Varying Number of Subscriptions

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Workload Size

Fig. 10. Effect of workload size.

space dimensionality, average subscription and event size, dimension cardinality, predi-
cate selectivity, dimension selectivity, subscription expressiveness, and event matching
probability.

8.6.1. Effect of Workload Distribution. The major distinguishing factor among matching
algorithms is the workload distribution, which clearly sets apart key vs. non-key-
based methods. k-index, APP, and SIFT (non-key-based methods) are highly sensitive to
the distribution of the workload whereas BE-Tree and Propagation (key-based methods)
are robust with respect to the distribution. The effects of the distribution are shown
in Figures 10–17, in which the graphs on the left column correspond to a uniform
distribution while the graphs on the right column correspond to a Zipf distribution.
The general trend is that under uniform distribution BE-Tree, ADGR, k-index, Propagation,
APP, GR, and SIFT all outperform SCAN that benefits only from sequential memory
access. However, under Zipf distribution both k-index, APP, and SIFT perform much
worse than SCAN. The poor matching time is attributed to few popular attributes
that are common among all subscriptions. Therefore, for every event about 80–90% of
subscriptions have at least one satisfied predicate which translates into a large number
of random memory accesses to increment subscription counters in (APP and SIFT)11 and
scan through k-index hashtable buckets (refereed to as the posting list in [Whang et al.
2009]). Overall, the BE-Tree matching time is at least four times better than the next
best algorithm (k-index) for uniform distribution and at least two and half times better
(Propagation) for Zipf distribution.

8.6.2. Effect of Workload Size. Next, we consider the matching time as we increase the
number of subscriptions processed. Figure 10(a)–10(b) illustrate the effect on matching
time as the number of subscriptions increases in which all algorithms scale linearly
with respect to the number of matched subscriptions. In these experiments, BE-Tree
exhibits an 80% better matching time as compared to the next best algorithm for the
uniform workload and a 63% better matching time for the Zipf workload.

8.6.3. Effect of Dimensionality. Unlike the workload size, the effect of space dimensional-
ity is more subtle; all algorithms with exception of k-index, APP, and SIFT are essentially

11However, due to the access pruning method employed in APP, APP outperforms SIFT in all experiments.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:33

 4

 8

 16

 32

 64

 128

 256

 512

50 100
400

700
1000

1400

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Dimensionality; Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Dimensionality

 16

 32

 64

 128

 256

 512

 1024

 2048

50 100
400

700
1000

1400

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Dimensionality; Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Dimensionality

Fig. 11. Effect of dimensionality.

 0.5

 1

 2

 4

 8

 16

 32

48 240
1.2K

6K 30K
150K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Cardinality; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Dim Cardinality

 1

 2

 4

 8

 16

 32

 64

48 240
1.2K

6K 30K
150K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Cardinality; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Dim Cardinality

Fig. 12. Effects of dimension cardinality.

unaffected as the dimensionality varies, see Figure 11(a)–11(b). The non-key-based
algorithms, namely, k-index, APP, and SIFT, substantially suffer in lower dimensionality
for the uniform workload in which subscriptions tend to share many common pred-
icates, which results in high overlap among subscriptions. Therefore, k-index, APP, and
SIFT are sensitive to degree of overlap among subscriptions and achieve peak matching
time when subscriptions are distributed into a set of disjoint subspaces. For instance,
when dimension is set to d = 50, BE-Tree improves over k-index by 93% and for d = 1400,
BE-Tree improves over k-index by 75% in which k-index is the second best algorithm for
such high dimensionality. However, for Zipf distribution, see Figure 11(b), k-index, APP,
and SIFT matching time does not improve as the dimensionality increases because
of the existence of few popular dimensions which results in a large overlap among
subscriptions. Therefore, for the Zipf workload, BE-Tree improves over k-index by 97%.

8.6.4. Effect of Dimension Cardinality. The importance of increasing the dimension cardi-
nality is twofold: the matching rate and the memory requirement. The matching rate of
most algorithms scales gracefully as the dimension cardinality increases, for instance,
BE-Tree and Propagation (Figure 12). In short, BE-Tree improves over Propagation’s match-
ing time by 66% for the uniform workload and improves over Propagation’s matching
time by 59% for the Zipf workload, Figure 12(a)–12(b), respectively.

However, unlike in BE-Tree, the memory footprint of k-index, APP, and SIFT blows
up exponentially as we increase the dimension cardinality, while keeping constant
the ratio of predicate range size with respect to cardinality. Both approaches rely on
the enumeration technique to resolve range predicates. For example, in order to cope
with the operator BETWEEN [v1, v2], the enumeration essentially transforms the value
of v2 − v1 from a decimal to a unary representation—an exponential transformation.
Therefore, we were unable to run k-index, APP, and SIFT on workloads with cardinality
of 6K and beyond. For instance, the workload with a 6K cardinality has on average a
predicate range size of 150 which in turn replaces a single range predicate with 150

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:34 M. Sadoghi and H.-A. Jacobsen

 0.5

 1

 2

 4

 8

 16

 32

0.50
0.66

0.75
0.80

0.85
0.90

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Selectivity; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Dim Selectivity

 0.5
 1
 2
 4
 8

 16
 32
 64

 128

0.50
0.66

0.75
0.80

0.85
0.90

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Selectivity; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Dim Cardinality

Fig. 13. Effect of dimension selectivity.

equality predicates. To further analyze the role of predicate range sizes, we devise
another experiment that varies the predicate range size while fixing the cardinality.

8.6.5. Effect of Dimension Selectivity. A notable workload characteristic is the dimension
selectivity of the space, which could have a direct influence on the the ability of matching
algorithm to effectively prune the search space. The result of our dimension selectivity
is captured in Figure 13. For a uniform workload the robustness of BE-Tree and the two
versions of Gryphon is evident because as the dimension selectivity varies only a negligi-
ble increase in matching time of at most 1% is observed while for Propagation and k-index,
a significant increase in matching time of up to 80% and 27% is observed, respectively.

The importance of dimension selectivity is further magnified for the Zipf workload
(Figure 13(b) in which a few dimensions are dominant. Therefore, for a low selectivity,
a substantial overhead incurred due to a larger number of false candidates; for
instance, as we decreased selectivity from 0.9 to 0.5, the response time is increased by
411% and 650% for Propagation and k-index, respectively. In general, the low selectivity
results in a less effective pruning of the search space, and BE-Tree compensate for the
low selectivity side effect by a deeper tree structure that provides a greater opportunity
to prune the search space.

8.6.6. Effect of Predicate Selectivity. In fact, the ratio of predicate range size with respect
to the dimension cardinality is inversely proportional to the predicate selectivity. The
predicate selectivity has a small influence on Propagation, which relies solely on selective
equality predicates, while it has a huge influence on k-index, APP, and SIFT, which do not
utilize the predicate selectivity information. Therefore, as shown in Figure 14, as the ra-
tio of the predicate range size increases (selectivity decreases), the search space pruning
mechanism of k-index and SIFT suffer due to the increased number of false candidates.

In general, a low selective predicate causes a less effective pruning of the search
space, and BE-Tree compensates for the low selectivity with a deeper tree structure that
provides a greater opportunity to prune the search space by using both highly selective
predicates (equality) and low selective predicates (range operators). As a result, BE-Tree
improves over the next best algorithms by 76% and 43% for the uniform and the Zipf
workloads, respectively (cf. Figure 14.)

8.6.7. Effect of Subscription/Event Size. Another key workload characteristic is the av-
erage number of predicates per subscription and event. We analyzed the effect of
subscription and event size with respect to three different workload characteristics:
varying both subscription and event size (Figures 15(a)–15(b), varying subscription
size while fixing event size (Figures 15(c)–15(d), and, varying event size while fixing
the subscription size (Figures 15(e)–15(f).

In particular, k-index, APP, and SIFT are highly sensitive to the number of predicates:
in addition to increasing the overlap among subscriptions, for k-index, it also translates

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:35

 0.5

 1

 2

 4

 8

 16

 32

0.18
0.25

0.31
0.37

0.43
0.50

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Extended Object Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Pred Range Ratio

 1

 2

 4

 8

 16

 32

 64

 128

0.18
0.25

0.31
0.37

0.43
0.50

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Extended Object Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Pred Range Ratio

Fig. 14. Effect of predicate selectivity.

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

5/13
7/15

14/25
27/43

45/61
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub/Event Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Sub/Event Size

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024

5/13
7/15

14/25
27/43

45/61
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub/Event Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Sub/Event Size

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

5/81
7/81

14/81
27/81

45/81
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(c) Unif: Sub/Event Size, Fix Event Size

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024

5/81
7/81

14/81
27/81

45/81
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(d) Zipf: Sub/Event Size, Fix Event Size

 0.5
 1
 2
 4
 8

 16
 32
 64

 128

7/13
7/15

7/25
7/43

7/61
7/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Event Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(e) Unif: Sub/Event Size, Fix Sub Size

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

7/13
7/15

7/25
7/43

7/61
7/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Event Size; Sub=100K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(f) Zipf: Sub/Event Size, Fix Sub Size

Fig. 15. Effect of subscription/event size.

into a longer sorting time, and for APP and SIFT, it translates to a larger number of
retrieving and scanning hashtable buckets when considering increasing both subscrip-
tion and event size, Figures 15(a)–15(b). The Propagation algorithm starts with a lower
matching time because subscriptions have fewer predicates and the chances of finding
an equality access predicate with high selectivity is lower, as subscriptions are not
evenly distributed in space. As a result, the Propagation algorithm reaches its optimal
performance when average subscription size reaches 14, and no noticeable benefit is
gained as the subscription size further increases, instead the response time gradu-
ally decreases due to an increase in computation cost for checking each predicate. In

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:36 M. Sadoghi and H.-A. Jacobsen

 4

 8

 16

 32

 64

 128

 256

 512

0.2 0.3 0.4 0.6 0.8 1.0

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying % of Equality Pred; Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: % Equality Pred

 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

0.2 0.3 0.4 0.6 0.8 1.0

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying % of Equality Pred; Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zif: % Equality Pred

Fig. 16. Effect of percentage of equality predicates.

general, BE-Tree gracefully scales as the number of predicates increases because of its
multilayer structure and improves over the next best algorithm by 63% for the uniform
and by 65% for the Zipf workload, as illustrated in Figures 15(a)–15(b).

When we vary the subscription size while fixing the event size (Figures 15(c)–15(d)),
the key observation is that the increase in the number of subscription’s predicates
has less impact on matching time as opposed to the increase in the number of event’s
predicates. The cost associated with increasing the number of subscription’s predicates
is evident because a longer time is required to check a larger number of predicates.
As shown in Figure 15(c)–15(d), varying the number of subscription/event predicates
from 5/81 to 5/81 results only in linear increase in matching time. In fact, for k-ind,
under Zipf distribution, the matching time is even slightly reduced as the number of
subscription increases because it provides a better opportunity to prune the search
space. Remarkably, k-ind reaches its worse performance when the number of event’s
predicates is increased, when moving from Figures 15(a) to 15(c), BE-Tree improves
k-ind by 72% and BE-Tree improves k-ind by 98%, respectively. This observation is more
striking in Figure 15(e)–15(f), which is discussed next.

In Figure 15(e)–15(f), when increasing the number of event predicates from 13 to 81
k-ind matching time is increased by 42.6 times while BE-Tree, SCAN, P, and APP increased
by less than 3 times. In conclusion, BE-Tree was dominant throughout all experiments
as we varied subscription and event sizes.

8.6.8. Effect of Percentage of Equality Predicates. In this experiment, we study the effects
of ratio of equality vs. nonequality predicates for each subscription. The general trend
is that the matching time for all algorithms improve as the percentage of subscription
equality predicates increases because the overlap among subscriptions is reduced, see
Figure 16(a)–16(b). Most notably, when subscriptions consist only of equality predi-
cates, the specialized GR (or our proposed ADGR) (for equality predicates) results in a
substantial performance gain, being the best algorithm after BE-Tree, compared with the
generic GR. The Propagation algorithm also improves significantly when subscriptions
are restricted to only equality predicates because there is a better chance to find more
effective access predicates. However, among all algorithms, GR and Propagation (but
not ADGR) are the most sensitive algorithm with respect to the percentage of equality
predicates; as the percentage of equality predicate decreases, their performance sub-
stantially deteriorates. For instance, for the uniform workload, Figure 16(a), BE-Tree
improves over GR matching time by 88% when subscriptions only have few equality
predicates and by 20% when subscriptions restricted to only equality predicates.

8.6.9. Effect of Percentage of Matching Probability. As the matching probability increases,
the number of candidate subscriptions and the event matching time also increases.
Therefore, we studied the effects of varying matching probability under both uniform
and Zipf workload based on different levels of predicate expressiveness. Under a

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:37

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Unif: Low Exp

 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Zipf: Low Exp

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(c) Unif: Med Exp

 8
 16
 32
 64

 128
 256
 512

 1024
 2048

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(d) Zipf: Med Exp

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
SCAN

(e) Unif: High Exp

 16

 32

 64

 128

 256

 512

 1024

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
BE
GR

ADGR
SCAN

(f) Zipf: High Exp

Fig. 17. Effect of percentage of matching probability.

uniform workload with low and medium expressiveness, while keeping the matching
probability below 1%, k-index outperforms Propagation, APP, and SIFT while BE-Tree
improves over k-index by 97%. However, as the matching probability goes beyond 3%,
the Propagation algorithm begins to outperform k-index, APP, and SIFT while BE-Tree
improves over ADGR and Propagation by up to 33%, even as the matching probability
reaches 9%, see Figure 17(a)–17(c); as the matching probability goes beyond 35%,
the success of BE-Tree continues as BE-Tree becomes marginally the better algorithm
followed by Propagation and SCAN, as shown in Section F of the electronic appendix.

In general, an increase in matching probability results in an increase in the number
of candidate matches; therefore, APP and SIFT is forced to scan large hashtable buckets,
using random access, to increment subscription counters for each of the satisfied predi-
cates. Similarly, k-index is forced to scan large buckets (i.e., posting lists) with a reduced
chance of pruning and an increased application of sorting to advance through each
bucket. For the Zipf distribution, Propagation remains the next best algorithm after BE-
Tree, see Figure 17(b)–17(d). Furthermore, in the experiments where the highest level
of expressiveness was used, BE-Tree dominates both versions of Gryphon algorithms and
SCAN by orders of magnitude, see Figure 17(e)–17(f).

8.6.10. Real Datasets Experiments. In the evaluation over real datasets, extracted from
DBLP, we first considered varying the workload size without controlling the match-
ing probability and the predicate expressiveness. Therefore, subscription and event
workloads were constructed by a direct translation from string data to q-gram and

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:38 M. Sadoghi and H.-A. Jacobsen

 1
 2
 4
 8

 16
 32
 64

 128
 256

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) Author: Low Exp

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) Title: Low Exp

 1
 2
 4
 8

 16
 32
 64

 128
 256

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(c) Author: Med Exp

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(d) Title: Med Exp

 1

 2

 4

 8

 16

 32

 64

 128

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K

BE-B
BE
GR

ADGR
SCAN

(e) Title: High Exp

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K

BE-B
BE
GR

ADGR
SCAN

(f) Author: High Exp

Fig. 18. Effect of percentage of matching probability (DBLP).

ultimately into a conjunction of equality predicates. Second, we considered the effects
of changing the matching probability followed by event expressiveness.

In our synthetic experiments in which the percentage of equality predicates is varied,
BE-Tree and the two versions of Gryphon algorithms are the top performing algorithms
followed by Propagation and k-index. Similar trends were also observed for real datasets.
In particular, for the author dataset, Figure 19(a), with an average of 8 predicates per
subscriptions, BE-Tree improves over GR by 37% while more substantially improving
over Propagation by over 98%. For the title dataset with much larger number of pred-
icates per subscriptions, that is at around 35 predicates per subscriptions, the gap
between BE-Tree and the other algorithms further widens. This is due to BE-Tree’s scor-
ing that exploits interrelationships within dimensions and the multilayer structure of
BE-Tree that effectively utilizes most of the subscription predicates to reduce the search
space. Therefore, as demonstrated in Figure 19(b), BE-Tree improves over GR by 51%
and significantly improves over Propagation by more than 99%, up to three orders of
magnitude. Furthermore, we have conducted the matching probability experiments
with varying degree of expressiveness which produced similar results as in our syn-
thetic dataset, which is shown in Figure 18. Moreover, for the author dataset, as the
matching probability goes beyond 50%, SCAN becomes marginally the better algorithm
followed by BE-Tree and Propagation as shown in Section F of the electronic appendix.
However, for the title dataset, even as the matching probability reaches 50%, BE-Tree

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:39

0.016

0.062

0.250

1.000

4.000

16.000

64.000

256.000

100K
200K

300K
400K

600K
760K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Number of Subscriptions

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(a) DBLP Author

0.016
0.062
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

50K
75K

100K
150K

200K
250K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Number of Subscriptions

BE-B
BE
GR

ADGR
P

k-Ind
APP
SIFT

SCAN

(b) DBLP Title

Fig. 19. Effect of real workload size.

outperforms both SCAN and Propagation by nearly 34%, as shown in Section F of the
electronic appendix. This performance gain is due to a larger average expression size
in the title dataset, which increases BE-Tree’s benefits by pruning the search space.

8.6.11. Effect of Event Expressiveness. One of the distinct feature of our matching se-
mantics and BE-Tree is to support an expressive event language because our proposed
semantics does not differentiate between event and subscription and models both as
Boolean expressions. Hitherto, we focus on evaluating stabbing subscription model
in which event expressions were limited to only equality predicate, a model which is
adopted by most prior work. Therefore, next, we shift the focus to stabbing subscription
model in which the event is no longer limited to only equality predicate.

Notably, the only other relevant matching algorithm that naturally supports expres-
sive event expression is SCAN. In addition, the Propagation can internally be augmented
in order to support a more expressive event expression, but such augmentation is
nontrivial especially for non-key-based counting approaches such as Gryphon, k-index,
APP, and SIFT. Our proposed augmentation for Propagation is as follows: for each event,
nonequality predicates are treated as as a set of equality predicates by enumerating
over the predicate permitted range of values. For instance, during the runtime the
predicate [attri BETWEEN [a, b]] is replace by

[attri = a, attri = a + 1, . . . , attri = b]. (25)

Therefore, we evaluated BE-Tree, Propagation, SCAN under this new paradigm while
varying the workload size and the distributions using both synthetic and real datasets.
The experimental results are demonstrated in Figure 20. As expected, BE-Tree continues
to outperform both Propagation and SCAN, and the gap between BE-Tree and Propagation
is further widen because of the natural support of BE-Tree for expressive event ex-
pressions through its two-phase space-cutting technique, and, in particular, its generic
clustering directory structure. For the synthetic datasets, under uniform workload, BE-
Tree improves over Propagation by up to 98% (Figure 20(a)) and under Zipf workload
BE-Tree remains superior and improves over Propagation by up to 56% (Figure 20(b)).
The smaller gap under Zipf workload is due to the nature of the workload in which not
only few dimensions are dominant, but also due to allowing nonequality predicate in
event expression, for those dominant dimensions, an event expression spans a large
range of domain values. Consequently, there is a higher degree of matching probability,
which is inherently harder to control, under the Zipf workload compared to the uni-
form workload. Similarly, for the real datasets, BE-Tree also significantly outperforms
Propagation by 89% (Figure 20(c)) for the author dataset and by 96% (Figure 20(d)) for
the title dataset.

8.6.12. Adapting to Subscription/Event Changes. In our adaptive experiments, we stud-
ied the self-adjusting mechanism and the maintenance cost (e.g., insertion, deletion,

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:40 M. Sadoghi and H.-A. Jacobsen

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128
 256

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

BE-B
BE

P
SCAN

(a) Unif: Med Exp

 8

 16

 32

 64

 128

 256

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

BE-B
BE

P
SCAN

(b) Zipf: Med Exp

0.062
0.125
0.250
0.500
1.000
2.000
4.000
8.000

16.000
32.000
64.000

128.000

100K
200K

300K
400K

600K
760K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Number of Subscriptions

BE-B
BE

P
SCAN

(c) Author: Med Exp

0.500
1.000
2.000
4.000
8.000

16.000
32.000
64.000

128.000

50K
75K

100K
150K

200K
250K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Number of Subscriptions

BE-B
BE

P
SCAN

(d) Title: Med Exp

Fig. 20. Effect of events expressiveness.

0.004
0.008
0.016
0.031
0.062
0.125
0.250
0.500
1.000
2.000
4.000

100
60 30 0 30 60 100A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying % of Unif in Wokload; Sub=1M

Unif --> Zipf --> Unif
Matching
Deletion
Insertion

0.004
0.008
0.016
0.031
0.062
0.125
0.250
0.500
1.000
2.000
4.000

100
60 30 0 30 60 100A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying % of Zipf in Wokload; Sub=1M

Zipf --> Unif --> Zipf
Matching
Deletion
Insertion

Fig. 21. Effect of dynamic workload.

update) of BE-Tree. The experiment setup is as follow. First, we fixed the event workload
in which half of the events are generated using a uniform while the other half using
a Zipf distribution. Second, we generated uniform and Zipf subscription workloads
with 0.1% matching probability. In each experiment, we start by individually inserting
each subscription from workload X into BE-Tree, then we individually remove each
subscription from BE-Tree and individually insert subscriptions from the workload
Y until BE-Tree contains only subscriptions from workload Y , then we reverse this
process until we gradually switch back to the original workload X. After a fixed number
of deletions and insertions, we run our event workload, and record the matching
time. The objective is to illustrate that BE-Tree adapts to workload changes and the
performance of BE-Tree does not significantly deteriorate even in extreme situations in
which the distribution rapidly and dramatically changes. In the first experiment, while
transitioning from uniform to Zipf and back again, the matching time at the end of the
transition approaches the original performance, Figure 21(a). A similar adaptation
was observed when we transitioned from Zipf to uniform and back again, Figure 21(b).
Another important observation from these experiments is that matching cost, as
expected, is the dominant compared to insertion and deletion cost. Also in BE-Tree, the
update operation is simply implemented as a deletion followed by an insertion.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:41

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Increasing Workload Size

BE-ADT
BE

(a) Unif: 20% False Candidate

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Increasing Workload Size

BE-ADT
BE

(b) Unif: 80% False Candidate

Fig. 22. Effect of dynamic workload (predicate false candidate rate).

Table VIII. BE-Tree/Bitmap Construction Time (second) & Memory Usage (MB)

BE-Tree (batch) Bitmap
Data Sets Number of Distinct Predicates Construction Time Index Size Construction Time Bitmap Size

Unif (1M) 519607 26.67 60 23.01 3.2
Zipf (1M) 266132 3.75 57 97.92 1.7
Author (760K) 10810 4.47 98 0.97 0.2
Title (250K) 11566 2.29 37 1.23 0.2

The above experiments mostly focused on adaptation to the drastic changes of the
subscription workload. Next we consider the BE-Tree’s adaptation with respect to event
workload by utilizing BE-Tree’s cost function. In these experiments, we consider two
types of event workload: (1) an event stream that results in generating up to 20% false
candidate through subscriptions covered predicates (Figure 22(a)) and (2) an event
stream that generates up to 80% false candidate (Figure 22(b)). For both experiments,
an identical subscription workload is used, and subscriptions are inserted incremen-
tally in 100k batches followed by reexecuting the entire event stream over it. We
perform the event matching using two BE-Tree variations: BE-ADT in which β in our cost
function is tuned dynamically as described in Section 5, and BE in which β is set to 0.5
and is fixed. We can observe that BE-ADT can detect the high rate of false candidate
generated by covered predicates; therefore, when BE-Tree is undergoing the two-phase
space partitioning for the newly inserted subscriptions, it attempts to utilize subsumed
predicate and avoid using covered predicates. Consequently, as more subscriptions are
inserted the gap between BE-ADT and BE widens, and a matching time reduction of up
to 10% is obtained (Figure 22(b)).

8.7. BE-Tree Optimization Evaluation

In this section, we study the effectiveness of key BE-Tree optimizations including bitmap
evaluation and Bloom filter pruning.

8.7.1. Lazy and Bitmap-based Predicate Optimizations. We begin by investigating BE-Tree
(batch version) and bitmap construction time and memory usage that are summarized
in Table VIII. First, we observe that the construction time of BE-Tree with batch
processing is longer compared to dynamic BE-Tree (which was shown in Table VII)
because all subscriptions are known in advance; thus, statistics gathering and
computations take longer, which in turn results in improved matching time. Second,
for the Zipf distribution, subscriptions are densely distributed, that is, many common
and overlapping predicates, which result in few dense regions of space associated to
a large number predicates. On the one hand, these densely distributed regions result
in a higher bitmap construction time while, on the other hand, the fewer number of
distinct predicates that are densely distributed across the attribute space result in a

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:42 M. Sadoghi and H.-A. Jacobsen

 2

 4

 8

 16

50 100
400

700
1000

1400

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Dimensionality; Sub=1M

BE-B
Lazy

Bitmap

(a) Unif: Dimensionality

 8

 16

 32

50 100
400

700
1000

1400

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Dimensionality; Sub=1M

BE-B
Lazy

Bitmap

(b) Zipf: Dimensionality

 0.25

 0.5

 1

 2

48 240
1.2K

6K 30K
150K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Cardinality; Sub=100K

BE-B
Lazy

Bitmap

(c) Unif: Dim Cardinality

 0.5

 1

 2

48 240
1.2K

6K 30K
150K

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Cardinality; Sub=100K

BE-B
Lazy

Bitmap

(d) Zipf: Dim Cardinality

Fig. 23. Effects of dimensionality/dimension cardinality on lazy/bitmap optimizations.

 0.0625
 0.125

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
Lazy

Bitmap

(a) Unif: Med Exp

 2

 4

 8

 16

 32

 64

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=1M

BE-B
Lazy

Bitmap

(b) Zipf: Med Exp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=400K

BE-B
Lazy

Bitmap

(c) Author: Med Exp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

0.01
0.1 1 3 5 9A

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Match (%); Sub=150K

BE-B
Lazy

Bitmap

(d) Title: Med Exp

Fig. 24. Effect of percentage of matching probability on lazy/bitmap optimizations.

more effective space saving ratio and ultimately reduced memory requirements of the
bitmap structure. These trends are also captured in Table VIII.

Next, we demonstrate experimentally the robustness of our proposed lazy and
bitmap-based predicate evaluation techniques, with respect to key workload parame-
ters that may affect its outcome, including workload distribution (Figures 23–24), space
dimensionality (Figure 23(a)–23(b)), dimension cardinality (Figure 23(c)–23(d)), event
matching probability (Figure 24,) and average subscription and event size (Figure 25.)

In order to investigate the scalability of our BE-Tree’s proposed optimizations, we
experiment with varying the number of dimension and dimension cardinality. As we

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:43

 0.25

 0.5

 1

 2

 4

 8

5/13
7/15

14/25
27/43

45/61
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub/Event Size; Sub=100K

BE-B
Lazy

Bitmap

(a) Unif: Sub/Event Size

 0.5

 1

 2

 4

 8

5/13
7/15

14/25
27/43

45/61
66/81

A
vg

. M
at

ch
in

g
Ti

m
e

(m
s)

Varying Sub/Event Size; Sub=100K

BE-B
Lazy

Bitmap

(b) Zipf: Sub/Event Size

Fig. 25. Effect of sub/event size on lazy/bitmap optimizations.

scale the number of dimension from 50-1400 not only do these optimizations scale well
with respect to memory use, but they also improve the matching time by up to 29% and
55% for lazy and bitmap techniques, respectively, (Figure 23(a)–23(b)). Likewise, as
we increase the dimension cardinality from 48-150K, our lazy and bitmap techniques
continue to outperform BE-Tree by up to 9% and 57%, respectively, (Figure 23(c)–23(d)).

In order to judge the broad applicability of BE-Tree extended with lazy and bitmap
optimizations, we study the effect of varying the degree of matching probability for
both synthetic and real workloads. These optimizations substantially outperform the
BE-Tree structure as we increase the matching probability because a higher matching
probability translates into fewer number of distinct predicates, which in turn is ben-
eficial to both techniques. As a result, on average, with the lazy predicate evaluation,
we obtain up to 43% improvement while the bitmap approach significantly reduces
BE-Tree’s matching time by up to 64%, as shown in Figure 24.

A key distinguishing workload parameter that demonstrates the effectiveness of
our lazy and bitmap evaluations is the effect of changing subscription and event size
because as we increase the number of predicates per subscription, the number of
predicate evaluations also increases resulting in a larger saving from evaluating every
distinct predicate exactly once. As a result, for the lazy optimization, on average, we
reduce the matching time by up to 24% for both uniform and Zipf distributions while
for the bitmap optimization, on average, we achieve up to 75% improvement for both
workloads (Figure 25.)

The final aspect of our bitmap optimization is to demonstrate the effectiveness of our
2-dimensional subscription representation. Therefore, we consider two variations of
BE-Tree with bitmap optimization: bitmap, which is the base version, and bitmap-CC,
which is the cache-conscious version that incorporates 2-dimensional subscription
representation. As discussed previously, with 2-dimensional representation both sub-
scriptions and Result Bit-array could potentially fit in the processor cache entirely and
eliminate all cache misses. This reduction in the number of cache misses is clearly
evident by significant reduction in matching time by up to 70% as shown in Figure 26.

8.7.2. Bloom Filter Optimization. We conclude our experimental studies with an analysis
of the Bloom filter optimization. In these experiments, as we increase the workload
size, we vary the Bloom filter size from 16–64 bits, as shown in Figure 27. As expected,
the increase in the Bloom filter size decreases the false positive rate of the Bloom filter,
which in turn, results in an improved matching time by eliminating false candidate
matches. However, as the Bloom filter size is increased, the overhead for checking
the necessary condition C through the Bloom filter is also increased. Thus, in our
experiment, a 32-bit Bloom filter achieved the right balance between the size and
and reduction in false positive rate. For instance, when a 32-bit Bloom filter is used,
the matching time of BE-Tree with lazy optimization is improved by 70% and 50% for

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:44 M. Sadoghi and H.-A. Jacobsen

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Bitmap
Bitmap-CC

(a) Unif: Workload Size

 0.25

 0.5

 1

 2

 4

 8

 16

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Bitmap
Bitmap-CC

(b) Zipf: Workload Size

Fig. 26. Effect of cache-conscious data structure on bitmap optimization.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Lazy
Bloom-16
Bloom-32
Bloom-64

(a) Unif: Workload Size — Lazy

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Lazy
Bloom-16
Bloom-32
Bloom-64

(b) Zipf: Workload Size — Lazy

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Bitmap
Bloom-16
Bloom-32
Bloom-64

(c) Unif: Workload Size — Bitmap

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100K
300K

500K
700K

900K
1MA

vg
. M

at
ch

in
g

Ti
m

e
(m

s)

Varying Number of Subscriptions

Bitmap
Bloom-16
Bloom-32
Bloom-64

(d) Zipf: Workload Size — Bitmap

Fig. 27. Effect of workload size on bloom filter optimization.

uniform and Zipf distributions (Figure 27(a)–27(b)) while the matching time of BE-Tree
with bitmap optimization is improved by 21% and 16% for uniform and Zipf distribu-
tions (Figure 27(c)–27(d)). As expected, the Bloom filter optimization is more effective
for lazy optimization, in which the cost of predicate evaluation is higher compared to
when the bitmap optimization is used instead; hence, the benefit of false candidate
reduction of Bloom filter is more prominent in conjunction with the lazy predicate
evaluation. In general, based on our findings, the Bloom filter optimization is best
suited when matching probability is low, that is, event matches are rare, and, more im-
portantly, there are only handful of predicates (or attribute-value pairs) in each event.

8.8. Experimental Summary

To summarize our evaluation, let us consider three main workload categories:
(1) workloads with uniform distribution and a low-to-high degree of expressiveness,
(2) workloads with Zipf distribution and a low-to-high degree of expressiveness, and (3)
real-world and synthetic workloads with minimum degree of expressiveness (equality
predicates only). From best to worst performing algorithms, in the first category (uni-
form) we have: BE-Tree, our Advanced Gryphon (ADGR), k-index [Whang et al. 2009], Propa-
gation [Fabret et al. 2001], APP [Farroukh et al. 2011], and SIFT [Yan and Garcı́a-Molina

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:45

1994]. In the second category (Zipf) we have: BE-Tree, Propagation, ADGR, k-index, APP,
and SIFT. Lastly, in the third category we have: BE-Tree, ADGR, Gryphon [Aguilera et al.
1999], Propagation, and k-index. The general trends are that non-key-based algorithms,
that is, k-index and SIFT, do poorly on workloads that consist of few popular dimensions
(i.e., low dimensional space and Zipf distribution) because of the significant increase in
the number of false candidates that have to be considered. Also, Gryphon and Propagation
are highly sensitive to the degree of expressiveness of subscriptions. Finally, BE-Tree
dominated in every category, yet by incorporating our lazy and bitmap-based predicate
evaluation optimizations, BE-Tree’s matching time is further reduced by up to 43% and
75%, respectively. We can shape off up to an additional 70% of the matching time of
BE-Tree (which is already extended with our predicate evaluation optimizations) after
also applying the Bloom filter optimization when matching probability is low.

9. CONCLUSIONS

In this work, we presented BE-Tree, a novel index structure to efficiently index and
match Boolean Expressions defined over a high-dimensional discrete space. We intro-
duced a novel two-phase space-cutting technique to cope with the curse of dimension-
ality underlying the subscription and event space, which appears in many application
domains. Furthermore, we developed a new cost model and self-adjustment policies
that enabled BE-Tree to actively adapt to workload changes. Moreover, we propose scal-
able and effective predicate evaluation techniques, that is, lazy and bitmap optimiza-
tions, which substantially improve BE-Tree’s matching computation. Finally, through
an extensive experimental evaluation, we demonstrated that BE-Tree is a generic index
for Boolean expressions that supports variety of workload configurations and handles
predicates with expressive set of operators.

Consequently, we presented a wide range of applications, including distributed event-
based systems, applications in the cospace, targeted web advertising, and approximate
string matching, that can benefit from a general purpose indexing technique for Boolean
expressions.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed via the ACM Digital Library.
It includes the BE-Tree deletion algorithm, detailed correctness proofs for BE-Tree theo-
rems, and additional experiments including a comparison with a matching algorithm
running on GPUs.

REFERENCES

AGRAWAL, R., AILAMAKI, A., ET AL. 2008. The Claremont report on database research. SIGMOD Rec. 37, 3, 9–19.
AGUILERA, M. K., STROM, R. E., STURMAN, D. C., ASTLEY, M., AND CHANDRA, T. D. 1999. Matching events in a

content-based subscription system. In Proceedings of the 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC’99). ACM, New York, 53–61.

ARUMUGAM, S., DOBRA, A., JERMAINE, C. M., PANSARE, N., AND PEREZ, L. 2010. The DataPath system: A datacentric
analytic processing engine for large data warehouses. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’10). ACM, New York, 519–530.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’90). ACM, New York, 322–331.

BERCHTOLD, S., KEIM, D. A., AND KRIEGEL, H.-P. 1996. The X-tree: An index structure for high-dimensional
data. In Proceedings of the 22th International Conference on Very Large Data Bases (VLDB’96). Morgan
Kaufmann Publishers Inc., San Francisco, CA, 28–39.

BERG, M. D., CHEONG, O., KREVELD, M. V., AND OVERMARS, M. 2008. Computational Geometry: Algorithms and
Applications 3rd Ed., Springer.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

8:46 M. Sadoghi and H.-A. Jacobsen

BRENNA, L., DEMERS, A., GEHRKE, J., HONG, M., OSSHER, J., PANDA, B., RIEDEWALD, M., THATTE, M., AND WHITE, W.
2007. Cayuga: a high-performance event processing engine. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’07). ACM, New York, 1100–1102.

CAMPAILLA, A., CHAKI, S., CLARKE, E., JHA, S., AND VEITH, H. 2001. Efficient filtering in publish-subscribe
systems using binary decision diagrams. In Proceedings of the 23rd International Conference on Software
Engineering (ICSE’01). IEEE, 443–452.

CANDAN, K. S., HSIUNG, W.-P., CHEN, S., TATEMURA, J., AND AGRAWAL, D. 2006. AFilter: adaptable XML filtering
with prefix-caching suffix-clustering. In Proceedings of the 32nd International Conference on Very Large
Data Bases (VLDB’06). VLDB Endowment, 559–570.

CARZANIGA, A. AND WOLF, A. L. 2003. Forwarding in a content-based network. In Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM’03). ACM, New York, 163–174.

CHAN, C.-Y., FELBER, P., GAROFALAKIS,M., AND RASTOGI, R. 2002. Efficient filtering of XML documents with
XPath expressions. VLDB J. 11, 4, 354–379.

CHANDEL, A., HASSANZADEH, O., KOUDAS, N., SADOGHI, M., AND SRIVASTAVA, D. 2007. Benchmarking declarative
approximate selection predicates. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’07). ACM, New York, 353–364.

CHANDY, K. M., CHARPENTIER, M., AND CAPPONI, A. 2007. Towards a theory of events. In Proceedings of the
Inaugural International Conference on Distributed Event-Based Systems (DEBS’07). ACM, New York,
180–187.

CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for online
data cleaning. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’03). ACM, New York, 313–324.

CUGOLA, G. AND MARGARA, A. 2012. High-performance location-aware publish-subscribe on GPUs. In Proceed-
ings of the ACM/IFIP/USENIX 13th International Middleware Conference. Lecture Notes in Computer
Science, vol. 7662, Springer, 312–331.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H., AND FISCHER, P. 2003. Path sharing and predicate evaluation
for high-performance XML filtering. ACM Trans. Datab. Syst. 28, 4, 467–516.

FABRET, F., JACOBSEN, H. A., LLIRBAT, F., PEREIRA, J., ROSS, K. A., AND SHASHA, D. 2001. Filtering algorithms and
implementation for very fast publish/subscribe systems. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’01). ACM, New York, 115–126.

FARROUKH, A., SADOGHI, M., AND JACOBSEN, H.-A. 2011. Towards vulnerability-based intrusion detection with
event processing. In Proceedings of the 5th ACM International Conference on Distributed Event-Based
System (DEBS’11). ACM, New York, 171–182.

FELLEGI, I. P. AND SUNTER, A. B. 1969. A theory for record linkage. J. Amer. Statist. Assoc. 64, 328, 1183–1210.
FISCHER, P. M. AND KOSSMANN, D. 2005. Batched processing for information filters. In Proceedings of the 21st

International Conference on Data Engineering (ICDE’05). IEEE, 902–913.
FONTOURA, M., SADANANDAN, S., SHANMUGASUNDARAM, J., VASSILVITSKI, S., VEE, E., VENKATESAN, S., AND ZIEN, J.

2010. Efficiently evaluating complex Boolean expressions. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’10). ACM, New York, 3–14.

FORGY, C. L. 1990. Rete: A fast algorithm for the many pattern/many object pattern match problem. In Expert
Systems, P. G. Raeth, Ed., IEEE, 324–341.

FREESTON, M. 1995. A general solution of the n-dimensional B-tree problem. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’95). ACM, New York, 80–91.

GAEDE, V. AND GÜNTHER, O. 1998. Multidimensional access methods. ACM Comput. Surv. 30, 2, 170–231.
GIARRATANO, J. C. AND RILEY, G. 1989. Expert Systems: Principles and Programming. Brooks/Cole Publishing

Co., Pacific Grove, CA.
GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD’84). ACM, New York, 47–57.
HANSON, E. N., CARNES, C., HUANG, L., KONYALA, M., NORONHA, L., PARTHASARATHY, S., PARK, J. B., AND VERNON, A.

1999. Scalable trigger processing. In Proceedings of the 15th International Conference on Data Engineer-
ing. M. Kitsuregawa, M. P. Papazoglou, and C. Pu, Eds., IEEE, 266–275.

HANSON, E. N., CHAABOUNI, M., KIM, C.-H., AND WANG, Y.-W. 1990. A predicate matching algorithm for database
rule systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’90). ACM, New York, 271–280.

HULL, R. 2008. Artifact-centric business process models: Brief survey of research results and challenges. In
Proceedings of the OTM Conferences, Part II. Lecture Notes in Computer Science, vol. 5332, Springer,
1152–1163.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

Analysis and Optimization for Boolean Expression Indexing 8:47

JERZAK, Z. AND FETZER, C. 2008. Bloom filter based routing for content-based publish/subscribe. In Proceedings
of the 2nd International Conference on Distributed Event-Based Systems (DEBS’08). ACM, New York,
71–81.

KALE, S., HAZAN, E., CAO, F., AND SINGH, J. P. 2005. Analysis and algorithms for content-based event matching.
In Proceedings of the 4th International Workshop on Distributed Event-Based Systems (DEBS’05). IEEE,
363–369.

MACHANAVAJJHALA, A., VEE, E., GAROFALAKIS, M., AND SHANMUGASUNDARAM, J. 2008. Scalable ranked pub-
lish/subscribe. Proc. VLDB Endow. 1, 1, 451–462.

MARGARA, A. AND CUGOLA, G. 2013. High performance publish-subscribe matching using parallel hardware.
IEEE Trans. Parallel Distrib Syst 99, PrePrints, 1.

OOI, B. C., TAN, K. L., AND TUNG, A. 2010. Sense the physical, walkthrough the virtual, manage the co (existing)
spaces: A database perspective. SIGMOD Rec. 38, 3, 5–10.

RJAIBI,W., DITTRICH, K. R., AND JAEPEL, D. 2002. Event matching in symmetric subscription systems. In Pro-
ceedings of the Conference of the Centre for Advanced Studies on Collaborative Research (CASCON’02).
IBM Press.

SADOGHI, M. 2012. Towards an extensible efficient event processing kernel. In Proceedings of the SIG-
MOD/PODS PhD Symposium (PhD’12). ACM, 3–8.

SADOGHI, M., BURCEA, I., AND JACOBSEN, H.-A. 2011. GPX-Matcher: A generic Boolean predicate-based XPath
expression matcher. In Proceedings of the 14th International Conference on Extending Database Tech-
nology (EDBT/ICDT’11). ACM, New York, 45–56.

SADOGHI, M. AND JACOBSEN, H.-A. 2011. BE-Tree: an index structure to efficiently match Boolean expressions
over high-dimensional discrete space. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’11). ACM, New York, 637–648.

SADOGHI, M. AND JACOBSEN, H.-A. 2012. Relevance matters: Capitalizing on less (top-k matching in publish/
subscribe). In Proceedings of the IEEE 28th International Conference on Data Engineering (ICDE’12).
IEEE, 786–797.

SADOGHI, M., JACOBSEN, H.-A., LABRECQUE, M., SHUM, W., AND SINGH, H. 2010. Efficient event processing through
reconfigurable hardware for algorithmic trading. Proc. VLDB Endow. 3, 2, 1525–1528.

SADOGHI, M., SINGH, H., AND JACOBSEN, H.-A. 2011. Towards highly parallel event processing through recon-
figurable hardware. In Proceedings of the 7th International Workshop on Data Management on New
Hardware (DaMoN’11). ACM, New York, 27–32.

SAITA, C.-A. AND LLIRBAT, F. 2004. Clustering multidimensional extended objects to speed up execution of
spatial queries. In Proceedings of the 9th International Conference on Extending Database Technology.
Lecture Notes in Computer Science, vol. 2992, Springer, 623–624.

SELLIS, T. K., ROUSSOPOULOS, N., AND FALOUTSOS, C. 1987. The R+-tree: A dynamic index for multi-dimensional
objects. In Proceedings of the 13th International Conference on Very Large Data Bases (VLDB’87). Morgan
Kaufmann Publishers Inc., San Francisco, CA, 507–518.

TRIANTAFILLOU, P. AND ECONOMIDES, A. A. 2002. Subscription summaries for scalability and efficiency in pub-
lish/subscribe systems. In Proceedings of the 22nd International Conference on Distributed Computing
Systems (ICDCSW’02). IEEE, 619–624.

WHANG, S. E., GARCIA-MOLINA, H., BROWER, C., SHANMUGASUNDARAM, J., VASSILVITSKII, S., VEE, E., AND YERNENI,
R. 2009. Indexing Boolean expressions. Proc. VLDB Endow. 2, 1, 37–48.

YAN, T. W. AND GARCÍA-MOLINA, H. 1994. Index structures for selective dissemination of information under the
Boolean model. ACM Trans. Datab. Syst. 19, 2, 332–364.

Received February 2012; revised August 2012, November 2012; accepted January 2013

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 8, Publication date: June 2013.

