
Optimizing Key-Value Stores for Hybrid Storage
Architectures

Prashanth Menon #, Tilmann Rabl #†, Mohammad Sadoghi ∗, Hans-Arno Jacobsen #

# Middleware Systems Research Group, University of Toronto
† IBM Canada Software Laboratory, CAS Research

∗ IBM T.J. Watson Research Center

Abstract
Flash-based solid state drives (SSDs) are increas-
ingly becoming a popular choice as a storage de-
vice within database management systems and key-
value stores alike. SSDs offer fast throughput and
low latency access to data, but their price-per-byte
cost often makes them uneconomical for exclusive
use, especially in the era of big data workloads.
A common solution to this problem is to augment
existing database systems by adding smaller SSDs
that target only performance-critical areas. We be-
lieve this hybrid approach to be a stop-gap solution.

Rather than simply extending existing systems
with SSDs, in this work we completely re-architect
how a key-value database operates in a hybrid stor-
age setting with both small but fast SSDs and
slower but high-capacity HDDs. We formulate an
accurate I/O cost model to study how popular key-
value stores behave under several varying represen-
tative workloads. Based on these studies and tak-
ing a holistic approach, we design a system that
dynamically optimizes the data layout and access
strategy that leverages the strengths of each avail-
able storage medium.

1 Introduction
Traditional database systems were conceived, de-
signed and largely built with the classical stor-
age hierarchy in mind - very fast but limited main
memory that sits in front of a large but slow hard-
disk drive (HDD). This model has worked as CPU
speed, memory speed and hard-disk capacity have
grown, but this is no longer the case. CPU and
memory speeds have stagnated while new emerg-
ing storage mediums like fast flash and non-volatile
memory present opportunities for vast improve-

Copyright c© 2014 IBM Corp. Permission to copy is hereby
granted provided the original copyright notice is reproduced in
copies made.

ments to database performance.
Solid-state disk (SSD) offers fast access to per-

sistent data, but their price-per-byte cost contin-
ues to make their exclusive use uneconomical for
the majority of use-cases, especially in an era of
big-data applications. As such, SSDs have often
been introduced to the database ecosystem as an
extension that targets only performance-critical ar-
eas [1, 4, 5]. This means relegating the SSD to op-
erate as a cache or as simple extension to the buffer
pool [2, 3].

It is the authors’ belief that the extension model
for leveraging SSDs and future non-volatile mem-
ory solutions is non-optimal. We need to redesign
the database architecture in an environment that in-
cludes SSDs and presumes the existence of highly
multi-core processors and newer emerging non-
volatile memory devices.

We constrain this work to key-value stores,
specifically BigTable-based systems which are
prominently used in industry. First, we describe
how such systems operate and construct an I/O
cost model that accurately captures the cost of var-
ious supported operations. We focus on I/O cost
specifically because our interest lies in disk-based
databases; main-memory databases will require a
vastly different cost model. We use this cost model
to reason how LevelDB performs in six different
workloads that vary the ratio of reads and writes
and vary the key request distributions.

Our contributions are: (I) formulating a cost-
model for BigTabe-based systems; (II) identify-
ing common workloads and quantifying their cost
under LevelDB; (III) a new storage architectured
based on LSM-trees that utilizes SSDs and other
emerging storage technologies.

2 LevelDB
LevelDB is an embedded key-value store that bases
its design on the popular Log-Structured Merge



(LSM) Trees. Writes into LevelDB are first ap-
pended to a commit log and subsequently buffered
into an in-memory sorted data-structure called the
memtable. When the size of the memtable reaches
a user-defined threshold, it is flushed to disk in the
form of an SSTable. SSTables are immutable 2MB
files containing a sorted list of key-value pairs,
followed by an index to enable efficient search-
ing. LevelDB organizes its SSTables into a series
of ordered levels that grow exponentially in size.
SSTables within a level are disjoint while SSTables
across distinct levels are allowed to overlap in their
key ranges. In this scheme, a read operation first
probes the memtable for the key of interest. If the
probe succeeds, the result is returned. Otherwise,
the search continues through the levels beginning
at the youngest. Since SSTables within a level are
disjoint in the keys they contain, a read operation
must only look into at most one SSTable from each
level. This process continues until the last and old-
est level is reached.

The size of the levels in LevelDB grow by a fac-
tor of 10, meaning that a level li is 10 times larger
than level li−1. The sizing property of levels allows
us to say that, on average, an SSTable on level li−1

overlaps with 10 SSTables on level li. To maintain
strict size constraints of each of the levels, LevelDB
needs to continuously move data from younger lev-
els that are full to older levels that have room to
store more data. This process is called compaction.
Compaction is performed by selecting a candidate
SSTable from the overflowing level and finding all
SSTables from the subsequent level that overlap in
the range of keys they cover. Once the tables are
identified, an n-way merge is performed to produce
a new set of SSTables on the higher level; the pre-
vious SSTables are marked obsolete and scheduled
for deletion from the system.

The read algorithm presented previously makes
the task of capturing and modelling the read-cost
fairly straightforward. Capturing the cost of writes
is more tricky. It is tempting to conclude that
writes incur no I/O cost aside from that of the com-
mit log since they are buffered in the memtable.
Moreover, modern disks can sustain high sequen-
tial write speeds and the commit log of BigTable
systems have been shown not be a bottleneck [5].
This line of reasoning is incomplete. LevelDB, as
with LSM-trees, suffers from write-amplification:
the continuous reading and re-writing of insertions,
updates and deletions as they propagate through the
levels. Write-amplification is manifested through
compaction. Compactions place a perpetual bur-
den on I/O resources and thus have a direct impact
on the performance of the rest of the system. It is
highly desirable to minimize the execution of com-
paction. Any model that attempts to capture the
true costs of operations in a BigTable-based sys-

tem must account for hidden write-amplification
and compaction costs.

3 Cost Model
The primary advantage of the LSM-tree is its abil-
ity to convert random writes into purely sequen-
tial writes. For this reason, we begin our cost
model construction by measuring the random-read
(prefetch random-read), sequential read and se-
quential write performance of modern HDDs and
SSDs. Though these are device specific, we believe
them to be representative of current offerings. The
results are provided in Table 1.

Description Symbol Metric
Random Read on HDD RH 5.5ms
Random Read on SSD RS 0.28ms
Sequential Read/Write on HDD WH 150 MB/s
Sequential Read/Write on SSD WS 240 MB/s

Table 1: Storage Device Parameters

Using the compaction algorithm described in
Section 2, we can derive a cost formula to reflect
the cost of compaction in LevelDB. Informally, the
cost of compacting an SSTable is the sum of the
cost of seeking to the beginning of each SSTable
involved, plus the cost of sequentially reading each
SSTable as part of the n-way merge and the cost
of sequentially writing each output SSTable back
out to disk. The structure of levels tells us that,
on average, a candidate SSTable from a level over-
laps with 10 SSTables on a higher level meaning
that a total of T = 11 SSTables (2T MB) will be
read and re-written. Formally, the average cost of a
compaction, Ccomp, measured in milliseconds can
be formulated as

Ccomp = (T ×R) + 2

(
2T × 1000

W

)
(1)

The subscripts of R and W have been removed
to indicate that the formula is applicable to any
storage device that employs the LevelDB storage
layout.

Using Formula 1 and the storage parameters
from Table 1, we can quantify the I/O cost of a
compaction in any LSM-tree based system.

4 Cost Analysis
We consider six workloads that permute three
read/write characteristics (read-only, read-write
and write-only) and two request distributions
(skewed and uniform). For each of the scenarios
we consider, we use a workload consisting of 500
million operations on key-value pairs. The compo-
sition of reads and writes and their distribution pat-
terns change according to the specific scenario we



evaluate. Every read includes a 16 byte key and ev-
ery write includes both a 16 byte key and a 200 byte
value. These sizes were chosen to produce a work-
ing dataset, D, of roughly 100GB (102,400MB).
It is easy to see that a workload which generates D
MB of data will produce L = log10 D levels. In the
analysis below, we ignore any caching behaviour to
keep the reasoning simple.

4.1 Read-Only - Uniform
In a read-only workload, the cost is equal to the
number of read operations multiplied by the cost
of each individual read. Since the cost of a read in
LevelDB is dominated by the seek cost of accessing
an SSTable, we require only a simple calculation
to determine the duration of a read-only workload
with a uniform key distribution.

For a uniform request distribution, the random
nature of key requests make it difficult to predict
what data can be brought onto the SSD for faster re-
sponse times. Any sort of LRU or frequency based
algorithm will prove to be ineffective.

4.2 Read-Only - Skewed
For a read-only skewed workload, we use an 80/20
request distribution where 80% of the key lookups
occur on 20% of the data. In the steady-state case, a
skewed read workload mimics the performance of
the uniform case because we ignore the impact of
caching. In a real setting, the frequently accessed
SSTables will be more likely to exist in the oper-
ating system page cache or LevelDB’s table cache
in memory. As such, reads to the 20% ”hot-set”
will be more likely to be served from main memory.
This skew-unawareness presents a large missed op-
portunity for LevelDB.

4.3 Write-Only - Uniform
Since levels in LevelDB grow exponentially by a
factor of 10, 90% of the generated SSTables will
reside on the last level and undergo L compactions.
There is an additional cost of physically writing D
MB of data received from the workload generator
into T = D

2 SSTables. The I/O cost to execute the
workload is captured in Formula 2.

C =

(
D

WH

)
+ (0.9T × L× Ccomp) (2)

4.4 Write-Only - Skewed
In a skewed 80/20 write-only workload there is sig-
nificant overwriting of data. Though 100GB of data
is sent to the server, only at most 20GB + 20GB =
40GB of unique data will reside on disk after com-
pactions complete when the system stabilizes.

It is useful to visualize each LevelDB level as a
histogram of keys where the buckets are the SSTa-

bles in a level. Though SSTables have a fixed size,
their width in a level’s histogram is variable.

The behaviour of the system experiencing a
skewed workload depends on the degree of conti-
guity of the 20% most frequently written keys. Us-
ing the histogram technique, if the ”hot-set” is con-
tiguous in its range, the width of select buckets in
a level will be very narrow. If a bucket (SSTable)
is narrow in the range of keys it contains, it will
overlap with fewer buckets on a higher level if and
when it is chosen for compaction. Therefore, while
more compactions may be required, the amount of
data read and re-written is smaller than in a uniform
case. If the range of keys covered in the ”hot-set”
is non-contiguous, the histogram will resemble that
of a uniform key distribution since a key can only
appear once in a given level; duplicates are elimi-
nated through the compaction process. In this case,
the compaction cost will approach that of a write-
only workload with a uniform key distribution.

4.5 Mixed Read and Write
In a mixed read and write workload, we make no
assumptions on the number of read and write oper-
ations that characterize the workload. Instead, we
let r < 1 be the fraction of read operations and
w = 1 − r be the fraction of write operations.
Now, if O is the total number of operations, then
Or = rO and Ow = (1 − r)O represent the total
number of read and write operations, respectively.
The total amount of data written to the server is
Dw = Ow × 0.0002 MB.

4.5.1 Mixed R/W - Uniform
The cost of executing the workload is equivalent to
the cost of serving Or reads, plus the cost of writ-
ing Dw MB, plus the cost of performing all the re-
quired compactions. As mentioned previously, the
majority of the compaction cost is attributed to the
compaction of 90% of the SSTables as they move
through each of the L levels. The cost of execution
in LevelDB is captured in formula 3.

C = (Or ×R) +

(
Dw

S

)
+ (0.9T × L× Ccomp)

(3)4.5.2 Mixed R/W - Skewed
We use the same 80/20 distribution model with the
added assumption that 80% of the read operations
and 80% of the write operations use the same 20%
of the key space during execution - meaning they
share in their ”hot-set” of data.

To calculate the cost of executing the workload
in LogStore, we combine the formulations from
Section 4.2 and Section 4.4. In essence, since we
ignore any caching behaviour, the cost of reads is
equivalent to the cost of performing a random read
to disk multiplied by the number of read operations.



The cost of writes requires scaling the compaction
cost proportional to the contiguity of the ”hot-set”
of data, since the contiguity alters the degree of
overlap of SSTables.

5 Optimizations
When SSDs are available, we can naturally place
some of the younger levels on the SSD to enable
faster retrieval without exhausting storage space.
However, the rationale of using levels if they ex-
ist on the SSD may be void. Levels provide a
bounded read time which was necessary on HDD,
but an SSD offers almost 50 times faster random-
read performance and much better parallelism ver-
sus its HDD counterparts. We can use this to our
advantage. We propose collapsing the levels on
the SSD into a single level and retain the last and
largest level on HDD. SSTables on the SSD may
overlap, but we can afford to perform some redun-
dant lookups on SSD by utilizing inherent parallel
access of the SSD and leveraging the fast random-
read speed it offers. The write path and compaction
algorithm remains the same.

5.1 Read-Only
LevelDB is not a skew-aware system. In our op-
timized system, we can utilize an LRU-based al-
gorithm to track frequently requested keys and mi-
grate them to SSD. There are currently two pro-
posed techniques to achieve this that vary in the
granularity they operate on. In the first solution,
if we recognize that a key’s access frequency ex-
ceeds a threshold (either by using an xLRU or
temperature-based technique) and the key resides
on HDD, then we re-insert only the key into the
data store. Along with the key, we add metadata to
indicate that the key is a duplicate of one that exists
in an older level and where to find it’s value. This
modification does not impact compaction since no
value information exists, but allows fast retrieval
since only one level is touched after finding a rein-
serted key.

The other solution works at the granularity of en-
tire SSTables. If we recognize that a key within an
SSTable is accessed frequently enough , we per-
form an upward compaction where we momentar-
ily reverse the direction of compaction in an ef-
fort to move data from HDD towards the SSD that
stores the younger levels and where the key can be
accessed quicker.

5.2 Write-Only
When we collapse the levels on the SSD and allow
overlapping tables, even if we can perform redun-
dant lookups on the SSD, doing so is unmanage-
able and sub-optimal. A simple solution is to trig-
ger compaction/merging of overlapping SSTables

only when the system observes incoming reads.
The compaction is efficient since it is performed on
SSD and has the benefit of enforcing disjointedness
of SSTables to ensure single-seek read latency.

With this optimization, the cost of a write-only
workload becomes the time required to initially
write all the data to SSD in addition to the com-
paction cost of of migrating an SSTable from SSD
to HDD.

C =

(
D

W

)
+ (T × Ccomp) (4)

This cost is a factor of L smaller than that of
LevelDB since we only maintain two levels, one on
SSD and one on HDD. We can further improve this
by optimizing how SSTables are stored on HDD;
we leave this to future work our group is currently
conducting.

6 Conclusions
In this paper, we constructed an I/O cost model
to study how LSM-tree based key-value stores re-
spond to a common set of workloads. Using these
results, we outlined the architecture of a new LSM-
tree based key-value store that presumes the exis-
tence of fast and highly parallel non-volatile stor-
age solutions and makes optimal use of them. We
believe that revisiting the design of traditional stor-
age systems in the light of new and emerging per-
sistent storage mediums is required rather than sim-
ply extending existing solutions.

References
[1] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A.

Lang, and K. A. Ross. An object placement ad-
visor for DB2 using solid state storage. PVLDB,
2(2):1318–1329, 2009.

[2] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A.
Ross, and C. A. Lang. SSD bufferpool extensions for
database systems. PVLDB, 3(2):1435–1446, 2010.

[3] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F.
Naughton, and A. Halverson. Turbocharging DBMS
buffer pool using SSDs. In SIGMOD, SIGMOD
’11, pages 1113–1124, New York, NY, USA, 2011.
ACM.

[4] G. Graefe. The Five-Minute Rule 20 Years Later:
and How Flash Memory Changes the Rules . Com-
munications of the ACM, 2009.

[5] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacobsen.
CaSSanDra: An SSD Boosted Key-Value Store. In
ICDE, 2014.


