
Minimizing the Communication Cost of Aggregation
in Publish/Subscribe Systems

Navneet Kumar Pandey⇤, Kaiwen Zhang†, Stéphane Weiss⇤, Hans-Arno Jacobsen†, Roman Vitenberg⇤
⇤Department of Informatics, University of Oslo, Norway

†Department of Computer Science, University of Toronto, Canada
⇤{navneet,stephawe,roman}@ifi.uio.no,†{kzhang,arno}@msrg.utoronto.ca

Abstract—Modern applications for distributed
publish/subscribe systems often require stream aggregation
capabilities along with rich data filtering. When compared to
other distributed systems, aggregation in pub/sub differentiates
itself as a complex problem which involves dynamic dissemination
paths that are difficult to predict and optimize for a priori,
temporal fluctuations in publication rates, and the mixed
presence of aggregated and non-aggregated workloads. In this
paper, we propose a formalization for the problem of minimizing
communication traffic in the context of aggregation in pub/sub.
We present a solution to this minimization problem by using a
reduction to the well-known problem of minimum vertex cover
in a bipartite graph. This solution is optimal under the strong
assumption of complete knowledge of future publications. We
call the resulting algorithm “Aggregation Decision, Optimal
with Complete Knowledge” (ADOCK). We also show that
under a dynamic setting without full knowledge, ADOCK can
still be applied to produce a low, yet not necessarily optimal,
communication cost. We also devise a computationally cheaper
dynamic approach called “Aggregation Decision with Weighted
Publication” (WAD). We compare our solutions experimentally
using two real datasets and explore the trade-offs with respect
to communication and computation costs.

I. INTRODUCTION

Aggregation is known to bring benefits to many distributed
systems and applications [1], [2], [3], [4]. One of the main
reasons behind its widespread use resides in its ability to
extract intelligible information out of large sets of data.
This paper discusses the challenges posed by introducing
aggregation to publish/subscribe, a paradigm which has been
widely applied in a variety of areas ranging from business
process execution [5], [6], stock-market monitoring [7] to
social interactions [8].

Traditionally, pub/sub has focused on high throughput and
scalability rather than on extended features such as aggrega-
tion. Nonetheless, aggregation in pub/sub promises to provide
support for new application areas and to deliver improved
performance for existing big data applications [9], [10], [11],
[12], [13].

We illustrate the need for aggregation in pub/sub through
two application scenarios. We first consider an intelligent
transport system (ITS) [14], designed within the framework
of the Connected Vehicle and Smart Transportation (CVST)
project [15]. In such a system, road sensor data as well
as crowdsourced data from mobile users are transmitted to
ITS server farms to coordinate traffic flow and to invoke the
appropriate agents on demand (e.g., police, first responders,
radio networks.) Supporting this application can only be done

through the use of sophisticated filtering capabilities to allow
each data sink to express its subscription interests vis-à-vis
streams of publication events. Furthermore, agents may be
mobile and versatile, thus, they are in need of a loosely coupled
and dynamic communication paradigm. Put together, these
requirements indicate that content-based pub/sub represents a
promising solution for our scenario. Additionally, ITS requires
real-time monitoring on aggregate queries over time-based
windows. For instance, the average car speed on a road
segment can be obtained by aggregating the speed of individual
cars at the location [1]. Another example is measuring the
amount of traffic during rush hours, which can be computed
by aggregating the number of individual cars during that period
of time.

As a second illustrating scenario, we consider a stock
market application, where stock values must be disseminated to
traders located in different agencies. Since the traders’ interests
are changing over time, content-based pub/sub represents a
viable communication substrate for enabling such data dissem-
ination. In addition to individual stock value updates, aggre-
gated values such as stock market indices or stock indicators
are commonly requested. For example, the MACD1 indicator
can be obtained by computing the exponential moving average
of stock values.

These scenarios illustrate the need for a scalable content-
based pub/sub system which can support aggregate subscrip-
tions. A more comprehensive discussion on the need for
aggregation in various pub/sub applications is presented in our
former paper [16]. However, the focus of the current paper is
different; see Section II for a detailed comparison.

Traditionally, scalability is achieved by reducing the com-
munication cost of the pub/sub infrastructure. One popular
technique to reduce the number of messages exchanged is
to build publication dissemination trees over an overlay of
brokers [17], [18]. Brokers are lightweight processes which
are in charge of handling and matching pub/sub messages
in order to route publications towards interested subscribers.
This overlay approach proves to be beneficial for aggregation
since brokers constitute ideal candidates for the deployment
of aggregation processing [16]. One important observation is
that aggregating publications at the correct broker reduces the
amount of in-network traffic by balancing the communica-
tion cost of disseminating raw publications with the cost of
disseminating aggregation results. Minimizing the number of
messages required to satisfy all the aggregation queries can be

1Moving average convergence/divergence

formalized as a decision problem for each broker to determine
which publications need to be forwarded and which ones need
to be aggregated. This paper is a study of this theoretical
problem, its ramifications for proposed practical solutions, and
the evaluation of said solutions.

The contributions of this paper are the following:

1) We introduce and formalize the Minimum-
Notifications-for-Aggregation (MNA) problem in content-
based pub/sub, a decision problem which determines for each
broker which publications to forward, and which ones to
aggregate.

2) We show that MNA is solvable in polynomial time by
reducing it to Minimum-Vertex-Cover over bipartite graphs.

3) We present the Aggregation Decision, Optimal with
Complete Knowledge (ADOCK) solution based on the re-
duction. It is optimal under the assumption that the broker
knows all publications and subscriptions in a given aggregation
window.

4) We describe the Weighted Aggregation Decision (WAD)
algorithm, a heuristic which is computationally less expensive
than ADOCK.

5) We evaluate the two solutions against a known baseline
and explore the trade-off between communication and com-
putation costs. The evaluation is performed using two real
datasets extracted from our presented application scenarios
(traffic monitoring and stock market).

II. RELATED WORK

Distributed data aggregation is a well explored area of
research where diverse techniques have been proposed and
developed [3], [4], [19], [20], [12], [21]. We can classify these
techniques into two categories: communication-oriented and
computation-oriented.

Communication-oriented work: Communication optimization,
the primary focus of our research, has been considered for
decentralized data aggregation with the goal of determining
system-wide properties [4]. However, the consideration was
limited to the same level of filtering expressiveness as topic-
based pub/sub. Thus, extending it for rich content-based dis-
semination leads to scalability issues due to the exponential
explosion of the number of delivery paths as mentioned in [22],
[23]. Meta [24], Shruti [20], and gridStat [2], which all provide
efficient routing using a control layer. The use of such a control
layer is incompatible with the loosely coupled nature of pub/
sub systems as it requires global knowledge of the overlay. In
addition, these solutions do not take into account the existence
of non-aggregate subscriptions. Techniques from distributed
stream processing systems (DSPS), such as efficient notifi-
cation scheduling [25], which optimizes message traffic by
batching, are orthogonal to and compatible with our approach.

Our previous paper [16] introduces aggregation techniques
for pub/sub systems and provides a preliminary adaptive
solution. The proposed solution, called per-Broker Adaptive
aggregation Technique (BAT), allows brokers to adaptively
switch between two modes: forwarding all publications or
aggregating all publications. Switching is based on a simple
rate-based heuristic. In contrast, the approach introduced in

this paper captures and formalizes the concept of an opti-
mal solution. We show how the problem can be solved in
an optimal manner under the assumption of knowing future
publications. Our techniques allow us to derive two practical
heuristics that do not require this assumption. These heuristics
outperform BAT, as we show in Section VIII. The granularity
of the decision problem and the adaptive scheme is also refined
in this paper.

Computation-oriented work: DSPSs and other distributed sys-
tems that focus on optimizing computations for aggregation
face a number of challenges common to distributed content-
based pub/sub. These systems also aggregate data from dis-
tributed publication sources and serve multiple queries [26].
However, in contrast to aggregation in pub/sub, the publication
sources are a priori known before making query plans and
operator placements [20]. Such static query plans require a
global view of the overlay topology, and hence can not be
directly applicable to pub/sub wherein the location of sources
and sinks is dynamic and each broker’s knowledge of the
topology is restricted to its neighborhood. Furthermore, source
nodes in a DSPS environment are assumed to continuously
produce data for long durations while in pub/sub, publish-
ers generate events intermittently at arbitrary points in time
making query planning optimizations ineffective. On the other
hand, some of the optimization techniques such as multi-query
optimization [27], [28] can be applied in pub/sub. Cayuga [9],
[29] and the approach in [10] provide distributed aggregation
and focus on efficient and scalable query processing for
complex event patterns. In contrast, our primary focus is on
optimizing distributed data flows. Systems which aggregate
metadata [30], [31] are orthogonal to our goal of aggregating
content.

More closely related to our work is [32], which also
provides support for aggregation in pub/sub. Here, the task of
aggregation is allocated per topic to the broker located at the
center of the routing tree. This paper shares similarities with
our approach in that aggregation is performed at brokers in
an overlay defined by pub/sub routing. The key differences
are that our work allows the aggregation task to be itself
distributed to multiple brokers instead of being assigned to
a central broker. Furthermore, we provide a formal treatment
of the problem which demonstrates an optimal distribution of
the aggregation task amongst brokers.

III. BACKGROUND

In this section, we describe the relevant terminology for
aggregation in pub/sub systems.

Publish/Subscribe model: We employ an overlay broker net-
work where each publisher and subscriber is connected to a
broker. Brokers forward publications through the overlay to
be delivered to the appropriate subscribers. Our work is based
on the content-based matching model with advertisement-
based forwarding. Publications are forwarded based on their
content following routing paths which are initialized by ad-
vertisements flooded through the network. Subscriptions are
matched against advertisements to construct delivery paths
from the publishers to the subscribers. The delivery paths
form a subscription delivery tree (SDT) for each subscriber.
The SDT is rooted at the subscriber node and contains all

2

the brokers necessary to reach publishers, which form the
leaves of the tree. Publications are then matched against the
subscriptions and forwarded down to the appropriate next hops
according to the SDTs of matching subscriptions. We also
consider only point-to-point communication between pairs of
brokers. Both advertisement and subscription covering are not
considered. Relaxation of the model to allow for cyclic routing,
multicasting, publication batching, and their implications on
the complexity of the optimal solution are out of the scope of
this paper.

Aggregation overview: A comprehensive description of rele-
vant aggregation terminology can be found in [4]. An aggre-
gation function takes a multiset of elements and produces a
result. Example aggregation functions include average, min-
imum, sum, and top-k. An aggregation function is consid-
ered decomposable if the same result can be obtained by
aggregating the partial results obtained by aggregating subsets
of the original input. Essentially, decomposability allows the
aggregation computation to be distributed by partitioning the
input set.

Non-decomposable functions cannot be broken down: the
result can only be derived by taking the entire input set
and processing it at once. For instance, distinct count (i.e.,
cardinality of a set) is non-decomposable: we require the entire
set of elements in order to avoid counting duplicates.

Given a stream of values, aggregation functions are com-
puted repeatedly over a sequence of windows, each with a start
point and duration. These window properties can be defined
using time (time-based windows) or number of elements
(count-based windows). The start point is determined by the
window shift size and the start point of the previous window.
The window shift size (�) and duration (!) are expressed either
in terms of time or number of values. If � < !, consecutive
window ranges are overlapping (sliding). If � = !, the window
is called tumbling, otherwise for (� > !), it is called sampling.

IV. PUBLISH/SUBSCRIBE AGGREGATION

Our design choice is to enhance publish/subscribe by
supporting subscriptions with aggregation semantics. This is
more communication- and computation-efficient than running
two separate infrastructures for pub/sub and aggregation.
This is especially important because pub/sub systems are
communication-intense and characterized by a large number
of publications.

To this end, we introduce aggregation subscriptions, which
are an extension of regular subscriptions: They include values
for � and ! in addition to conventional conditional predicates.
Note that this design choice results in a system where aggre-
gation and regular subscriptions co-exist so that the system
needs to support a dynamic combination of both.

In order to support aggregation, the pub/sub system must
repeatedly compute results for windows of matching publica-
tions for each aggregation subscription. These results are then
delivered to the corresponding subscribers as soon as they are
available. Note that there are no guarantees enforced on the
delivery policy for those results (e.g., ordering); such a QoS
policy is orthogonal to the focus of our paper.

In order to maximize communication efficiency, we want to
reuse the dissemination flow and mechanisms already present
in pub/sub to the extent possible. Publications matching ag-
gregation or regular subscriptions are propagated along SDTs
using the same match-and-forward algorithms. When a publi-
cation matches both an aggregation and a regular subscription,
we can forward it only once to conserve bandwidth.

The main difference and new challenge compared to ex-
isting solutions for aggregation, however, is distributing the
computation of aggregation across multiple brokers in the
overlay. When a broker in a SDT receives publications p1 and
p2 related to the same window of a decomposable aggregation
subscription, it might be able to aggregate p1 and p2 and route
the partial aggregate result further along the SDT instead of
forwarding p1 and p2 separately. This reduces the publication
load (both forwarding and matching) on subsequent brokers
along the SDT paths. It also produces a load of partial results,
yet not necessarily in the same proportion. For instance, if
five publications can be aggregated in one single result, the
publication load decreases by five messages while the result
load increases only by one. In other words, the cumulative load
of publications and results is not constant such that adjusting
the placement of aggregation-related tasks can minimize it. The
trade-off is non-trivial, however, and can be affected by the
rate of matching publications, the proportion between aggre-
gation and regular subscriptions, overlap between successive
time windows for the same aggregation subscription, broker
topology, placement of publishers and subscribers, etc.

The challenge is significant because (a) SDTs are de-
termined by the pub/sub system and, thus, are outside of
the control of the aggregation scheme, (b) SDTs and several
other factors affecting the trade-off are formed and changed
dynamically during the execution, and (c) there is no global
knowledge about these factors in a loosely-coupled pub/sub
system: Each broker can monitor its local situation and requires
a distributed protocol in order to learn the situation at its
neighboring brokers in the SDT. This challenge distinguishes
our work vis-à-vis other aggregation systems.

We now present two naive solutions, which represent the
two extremes with respect to distributing the computation
of aggregation across the brokers. The first solution, called
subscriber-edge aggregation, assigns the tasks of computing
and disseminating results to brokers directly connected to
subscribers (called subscriber edge brokers). The rest of the
brokers in the overlay are simply in charge of delivering pub-
lications all the way to those subscriber edge brokers. Another
solution, called publisher-edge aggregation, allocates the task
of computing results to the brokers directly connected to pub-
lishers. Those results are then disseminated by the intermediary
brokers in the SDTs to the subscriber edge brokers, who then
aggregate the results together before sending the compiled
data to the subscribers. Other solutions fall between these
two extremes and allocate aggregation computation to various
intermediate brokers located within the SDTs of aggregation
subscriptions.

Our goal in this paper is to find a solution for aggrega-
tion in pub/sub that minimizes the total load of all brokers.
Minimizing the communication and computation loads are
different yet related optimization objectives. We consider both
in our experiments in Section VIII-C and show that minimizing

3

communication cost typically (but not always) leads to reduced
computation cost because a smaller number of messages need
to be matched. Our theoretical treatment of the problem
focuses on optimizing the communication.

Aggregation as a local decision problem: We cast our per-
formance objective as a local decision problem run at each
broker in the SDTs for aggregation subscriptions. Each broker
must individually decide when to aggregate and disseminate
results and when to forward publications based on its limited
knowledge of the entire system. Although coordination might
produce a globally optimal solution, such a coordination is
impossible in loosely-coupled pub/sub systems. Thus, every
broker monitors its own local performance parameters, such as
the rate of matching publications for aggregation and regular
subscriptions and the notification frequency, which can be
derived from the normal routing operations of the pub/sub
system. We show how these parameters are sufficient to make
informed decisions.

In absence of coordination and other control messages,
the total communication cost depends on messages with pub-
lications and partial aggregation results. The bandwidth is
spent on forwarding the content, along with pub/sub metadata
and headers of different protocols at various levels. Because
publications and even aggregate results typically have fairly
small size, the space in the messages is mostly occupied by
metadata and headers. Therefore, the consumed bandwidth is
roughly proportional to the number of messages, which we use
as the specific optimization objective.

Even though the decision problem is local, its granularity
is still non-trivial. Consider that the same broker b0 can be a
parent of broker b in multiple SDTs T1 and T2, and the same
publication p may match the subscriptions of both T1 and T2. If
b has already decided to forward p to b0 for T1, there is no need
to take a separate decision for T2. On the other hand, if b has
decided to aggregate for T1 but the aggregate operator for T2 is
different, p may need to be forwarded or aggregated anew. At
the same time, the decisions for SDTs where the parent of b is
a different neighbor broker are always separate because SDTs
are acyclic and because we assume unicast communication
between neighbor brokers, as commonly accepted in pub/sub.
Therefore, we consider the local decision on a per-neighbor
basis for each broker, that is for all SDTs that have the same
neighbor as the SDT parent.

V. BROKER DECISION PROCESS

In this section, we present the aggregation decision process
at the broker level. We first define the concept of Notification
Window Range (NWR) before moving on to the flow of
aggregation processing.

A. Notification Window Range (NWR)

To manage notifications for each time window of a sub-
scription, we employ the concept of Notification Window
Range (NWR), which is a triplet of hsubscription, start-time,
and durationi. A publication p is said to match one NWR
hsub, time, durationi if and only if p matches the subscription
sub, and has been published between time and time + dura-
tion. After time+ duration, this NWR is considered “expired”
and becomes ready for processing. The following example

(a) NWRs (b) Matching graph

Fig. 1: Diagrams for Example 1

illustrates the relationship between aggregate subscriptions and
NWRs.

Example 1. We consider an example from the traffic use case
in which sensors are distributed over a city. These sensors
detect the presence of a car and estimate its speed. Each
car detection generates a publication which contains various
measurements including the estimated speed. In this example,
we consider three aggregate subscriptions (s1, s2, s3) defined
as follows:

• s1 aims at counting daily the number of cars passing a
crossing during a given period of two hours. It uses a
sampling window with � =24 hours while ! =2 hours,
aggregating the number of publications received. Assum-
ing that s1 is issued at t1, we consider the following
NWRs: N1

1 = hs1, t1, 2hi, N2
1 = hs1, t1+24h,2hi, N3

1 =

hs1, t1+48h,2hi, etc.

• s2 needs to estimate the average car speed on a particular
road segment for each hour. It uses a tumbling window
with � = ! =1 hour and generates N1

2 = hs2, t2,
1hi, N2

2 = hs2, t2+1h, 1hi, etc.

• Finally, the moving average of the number of cars pass-
ing a traffic light is used for statistical analysis. This
information can be computed using a sliding window
subscription s3 with the operator average applied to the
number of publications received. The parameters of s3
in this example are ! =2 hours and � = 0.5 ⇤ ! =

1 hour and the corresponding NRWs are N1
3 = hs3, t3,

2hi, N2
3 = hs3, t3+1h, 2hi, N3

3 = hs3, t3+2h, 2hi, etc.

These subscriptions, which are expressing sliding, tum-
bling, and sampling window semantics respectively, are shown
in Figure 1(a). The first publication (labelled p1) matches all
subscriptions. Since s3 uses a sliding window, p1 matches
two NWRs (N1

3 and N2
3), as opposed to one NWR each for

subscriptions s2 (N2
2) and s1 (N1

1). The second publication p2
matches only s2 and contributes to a single NWR N2

2.

B. Processing flow

Figure 2 illustrates the aggregation flow at a single broker.
When a publication is received, the broker performs its regular
matching process and forwards it downstream to the next

4

Fig. 2: Aggregation flowchart at a single broker

hop of any matching non-aggregate (regular) subscription.
If the publication does not match any regular subscriptions,
the broker processes aggregate subscriptions to find matching
NWRs. Publications are stored at the broker until all associated
NWRs expire.

At the expiration time of an NWR, the broker runs an
aggregation decision algorithm to decide whether or not to
aggregate. If the decision is to aggregate, publications attached
to the NWR are processed to obtain an aggregation result
which is sent down the link to the next hop leading to the
target subscription. This result, when received at a broker
downstream, is processed to find associated NWRs and is thus
taken into account in the decision algorithm of those NWRs
when processed further along the path.

VI. PROBLEM FORMULATION

For aggregation in distributed pub/sub systems, the problem
of finding the minimum number of notifications required for
aggregation can be formalized as a decision problem which
determines which publications need to be forwarded and which
ones need to be aggregated by each broker.

A. Minimum-Notifications-for-Aggregation

The objective of the aggregation decision algorithm is to
minimize the number of notified data items, which consist of
publications and aggregation results, sent by a broker to one of
its neighbor. We formalize this optimization problem, which
we call Minimum-Notification-for-Aggregation (MNA).

Let I be a set of data items received by a broker and Sb

the set of subscriptions sent to the broker by a neighboring
broker b. For the purpose of this section, we treat regular
subscriptions in Sb as a special case of aggregation. We can
convert those non-aggregate subscriptions to the NWR model
by creating one NWR for each matching publication. Notifying
an NWR then involves sending its content, which is a single
publication. Elements in I can be either raw publications
originating from publishers or aggregation results processed by
upstream brokers. A subscription s is treated as a set of NWRs
extracted from its window semantics: s = {N1,N2, . . . ,Nn},
as described in Section V-A. The content of an NWR N is a
subset of data elements from I denoted as IN, which matches
the NWR N. We define f(IN) as the aggregation result for
N, where f is the aggregation function for subscription s.
In this model, the f function only accepts the entire set IN,
meaning that aggregation for a subset of IN is not allowed.

This restriction allows the solution space to remain solvable
in polynomial time. Furthermore, we assume without loss of
generality that each NWR is non-empty since empty windows
do not generate any notifications.

We define Ob as the set of notifications a broker outputs for
neighbor broker b. Ob is defined over the same domain as I ,
which contains data elements which are either raw publications
or results.

For instance, let us consider a broker who is serving
subscription s1 in Example 1 (see Figure 1(a)). I contains
one publication p1, and an aggregation result r1 = f({p3, p4})
matching N1

1, i.e., the first NWR of subscription s1 in Sb com-
ing from a neighbor broker b. In this situation, IN1 = {p1, r1}.
Let assume that N1

1 is aggregated, leading to the creation of
f(IN1

1
) = f({p1, r1}). The output set Ob = {f(IN1

1
)}: Ob

contains the result to be sent over to b. If the decision is to
not aggregate, then Ob = {p1, r1}: Ob contains the elements
in IN1

1
= {p1, r1}.

To ensure that all aggregate subscriptions receive the
correct results with all their matching publications taken into
account, a candidate decision solution for MNA(I, Sb) must
generate, for each broker to each of its neighbor broker b, a
set of notifications Ob which satisfy the following correctness
criteria:

8s 2 Sb, 8N 2 s : f(IN) 2 Ob _ IN ✓ Ob

This property states that for each NWR N of subscriptions
known from broker b, the local broker must send either the
aggregation result f(IN), or all the elements IN required
to compute it. As a result, the broker b receives enough
information to produce all the aggregation result f(IN).

We present the Minimum-Notifications-for-Aggregation
problem: for a given broker and its neighbor broker b, an
optimal solution for MNA(I, Sb) generates a set of notifications
Ob amongst all possible sets satisfying the correctness criteria
such that |Ob| is minimal.

B. Reduction to Minimum-Vertex-Cover

Minimum-Notifications-for-Aggregation can be reduced to
Minimum-Vertex-Cover over an undirected bipartite graph,
which is solvable in polynomial time using a maximum
matching algorithm according to König’s theorem [33], [34].
This demonstrates that an MNA solution can be computed by
solving Minimum-Vertex-Cover on a graph constructed using
the local knowledge of a broker. In this reduction, we assume
that a broker is not allowed to decompose aggregation results to
be shared by multiple NWRs. Relaxing this assumption leads
to an increase in complexity that cannot be handled by this
reduction.

For an instance of the problem called MNA(I, Sb), we
map the sets I and Sb for a broker and its neighbor broker
b to a bipartite graph. Let G = (U, V,E), where G is a
bipartite graph with vertices U [V and edges E. We construct
the vertex set U = {u(i)|8i 2 I}. Each data item in I is
therefore mapped uniquely to a vertex in U . We construct
V = {v(N)|8N 2 s, 8s 2 Sb} similarly to map each NWR of
subscriptions in Sb to a vertex in V . The edge set is constructed
as follows: E = {(u(i), v(N))|8s 2 Sb, 8N 2 s, 8i 2 IN}. The

5

edges of the graph connect input data items from I to matching
NWRs from subscriptions in Sb.

This graph construction is performed in O(|I| +

cardA(N) ⇥ |N |), where N is the set of all NWRs for
subscriptions in Sb and cardA(N) is the average number of
data items contained in each NWR. Since the matching graph
only needs to take into account data items matching at least
one NWR, we can traverse the set of NWRs once and build
edges for each data item matching. Lookup for data items can
be performed in amortized O(1) time using a hash table after
performing |I| insertions.

Suppose we have M , a minimum vertex cover on graph
G. According to the definition of vertex cover, M has the
following property:

8(u, v) 2 E : u 2 M _ v 2 M

Figure 1(b) shows the matching graph generated from
Example 1. The vertices outlined in blue (N2

2 ,r1,p1) form a
minimum vertex cover set for the graph.

We can use a one-to-one mapping to create a set M 0 from
a set M as follows:

M 0
= {i|8u(i) 2 M} [{f(IN)|8v(N) 2 M}

The set M 0 mapped from M contains the elements in
I corresponding to the vertices coming from U , while it
contains the aggregation results for the NWRs associated to
the vertices in V . Note that M 0 can be mapped back to M by
using the inverse mapping. Since the mapping is one-to-one,
|M | = |M 0|.

We demonstrate that the vertex cover M can be mapped
to a candidate solution M 0 for aggregation as it satisfies the
correctness property described in Section VI-A:

Lemma 1. The vertex cover M obtained from G can be
mapped to a candidate solution M 0 for which the correctness
property for MNA(I, Sb) at a broker and its neighbor broker
b holds:

8s 2 Sb, 8N 2 s : f(IN) 2 M 0 _ IN ✓ M 0
)

Proof: Proof by contradiction. Suppose the property is
not enforced. Then 9s 2 Sb, 9N 2 s s.t. f(IN) /2 M 0 ^ (9i 2
IN s.t. i /2 M 0

). By virtue of our mapping, 9s 2 Sb, 9N 2
s s.t. v(N) /2 M ^ (9i 2 IN s.t. u(i) /2 M) This implies
9(u(i), v(N)) 2 E s.t. u(i) /2 M ^ v(N) /2 M , which
contradicts the vertex cover property of M .

Lemma 1 shows that M 0 contains sufficient information for
a broker to compute the aggregation. Lemma 2 establishes that
any candidate solution set Ob for aggregation can be mapped
to a vertex cover O0

b on the constructed graph G:

Lemma 2. A solution set Ob for MNA(I, Sb) at a broker and
its neighbor broker b can be mapped to a vertex cover O0

b for
graph G.

Proof: Proof by contradiction. Suppose we have a set
Ob which satisfies the correctness criteria for aggregation, but
for which the corresponding O0

b does not satisfy the vertex
cover property. For O0

b, we observe that 9(u(i), v(N)) 2
E s.t. u(i) /2 O0

b ^ v(N) /2 O0
b. However, this means 9s 2

(a) Static (b) ADOCK (c) WAD

Fig. 3: Matching graphs

Sb, 9N 2 s s.t f(IN) /2 Ob ^ (9i 2 IN s.t. i /2 Ob), which
violates the correctness criteria for aggregation.

With Lemma 1 and 2, we can prove the reduction:

Theorem 1. Minimum-Notifications-for-Aggregation can be
reduced to Minimum-Vertex-Cover by constructing a minimum
vertex cover M for graph G derived from MNA(I, Sb) at
a broker and its neighbor broker b. The mapping set M 0

from M is an optimal solution for Minimum-Notifications-for-
Aggregation.

Proof: Proof by contradiction. Suppose we have a solution
M for Minimum-Vertex-Cover over G. Using Lemma 1, M 0

from M is a candidate solution for aggregation. Now suppose
we have an optimal solution set Ob for MNA(I, Sb) such that
|Ob| < |M 0|. According to Lemma 2, O0

b mapped from Ob

is a vertex cover of graph G. However, since |O0
b| < |M |, a

contradiction arises since M is minimal vertex cover for G.
Therefore, Ob cannot exist, which means M 0 is an optimal
solution for MNA(I, Sb).

We conclude that MNA can be solved in polynomial time
by first performing the graph construction, and then computing
the minimum vertex cover of the bipartite graph. The resulting
minimum vertex cover corresponds to the set of data items
to be sent to the next hop. Vertices selected from the U set
correspond to input data items that are forwarded as is, while
vertices selected from V correspond to NWRs that need to be
aggregated such that f(IN) is sent to the next hop.

C. Static implementation

In this section, we summarize implementation considera-
tions for the above theorem. To implement an MNA-based
solution, each broker needs to maintain an undirected bipartite
graph (called the matching graph) for each outgoing link
where the two disjoint sets of nodes represent publications
and NWRs. In this matching graph, an edge connecting a
publication to an NWR node represents the publication match-
ing the particular NWR. At the arrival of a publication, a
publication node and the corresponding edges to all matching
NWRs are added to the matching graph. Two NWRs are said to
be interconnected if there is at least one publication matching
these two NWRs. Figure 3(a) shows an example graph created
from the NWRs and publications. Once all publications have
been received, the minimum vertex cover is determined. In
this example, the minimum vertex cover set contains three
nodes corresponding to f(INa

a
), f(INb

b
) and f(INc

c
). In other

6

words, we aggregate the three NWRs and send a total of
three notification messages. The complete matching graph,
which includes all NWRs and all publications, is used to
determine the minimum number of notifications. This also
implies that aggregation decisions are computed only after
receiving all publications. This modus operandi is unrealistic
for all practical purposes as it defers the aggregation decision
until complete publication knowledge is acquired. Moreover,
executing the decision algorithm on a graph containing large
numbers of publications and NWRs creates a computational
burst. Next, we discuss how these assumptions can be relaxed
to obtain a practical solution.

VII. DYNAMIC APPROACHES

We now investigate dynamic solutions, where aggregation
decisions are made at runtime without complete knowledge
of the pub/sub state, specifically of future publications. Upon
receipt of a new publication, the matching graph is updated by
adding a publication node and the edges to all matching NWRs
are added to the graph maintained by the broker. We constantly
prune the graph by removing processed publication and NWR
nodes. We also remove disconnected edges and vertices. Thus,
the matching graph contains only publications which are
involved in future aggregation decisions. As discussed earlier,
the lack of complete knowledge causes any dynamic solution
to generate more notifications than the static optimal solution.
In this section, we provide the details of our two dynamic
solutions.

A. Aggregation Decision, Optimal with Complete Knowledge
(ADOCK) approach

The ADOCK approach makes decisions by computing the
minimal vertex cover over a matching graph at runtime. When
processing an NWR, Algorithm 1 is invoked for each matching
outgoing link to decide whether to send individual matching
publications or aggregate them first and send the result. This
algorithm, inspired by [35], determines if the NWR node v
is part of the vertex cover. First, the algorithm computes the
maximum matching of graph G using the Hopcropft-Karp
algorithm [33]. From the König’s theorem [34], we know that
the size of the maximum matching is equal to the number of
vertices of the minimum vertex cover (which corresponds to
the minimum number of messages that we must send). In the
next step, we temporarily extend this graph to G2 by adding
two “dummy” publication nodes u1 and u2, and we connect
them to v. The addition of these publications enforces v to
be part of the vertex cover. Now after computing maximal
matching again, if v is part of the vertex cover then the size
of the maximum matching set of G2 is the same as G. If not,
then v is not in the minimum vertex cover. Therefore if the
size of the two maximal matchings are equal, the algorithm
returns true to aggregate v and false otherwise (i.e., to send
all matching publications). The running cost of this decision
algorithm is O(

p
V E) where V and E are set of all nodes and

edges in the matching graph. As shown in the description of
the matching graph (see Section VI-C), the nodes are formed
out of NWRs and publications. Hence, the running complexity
can also be represented as O(

p
|N |+ |P |⇥ degA(N)⇥ |N |)

where N and P are the sets of all NWRs and publications
respectively, and degA(N) is the average degree of an NWR
node.

Input: v: node corresponding to the NWR;
G=(V ,E): current matching graph
Output: aggregate: true if the NWR should be

aggregated
1 max1 := |MaxMatching(G)|
2 G2 := (V [{u1, u2}, E [{(v, u1), (v, u2)})
3 max2 := |MaxMatching(G2)|
4 if max1=max2 then
5 aggregate := true
6 else
7 aggregate := false
8 end

Algorithm 1: ADOCK decision algorithm for an NWR

Fig. 4: Scenario with suboptimal decisions for ADOCK

We demonstrate the above process using our previous
example used to describe the static approach. After receiving
the two first publications, the resulting matching graph is
represented in Figure 3(b). At this stage, the broker does not
have information about p3 and p4, therefore the nodes for
these publications and their edges (dotted lines) are unknown.
When Na

a expires, our decision algorithm instructs the broker
to forward publications p1 and p2, as Na

a is not part of the
minimum vertex cover. The graph is then updated by removing
the nodes for Na

a, p1, and p2 as well as their associated edges.
After the arrival of p3 and p4, the corresponding nodes and
edges are added. At the expiry of Nb

b, the algorithm decides to
forward publications p3 and p4 before deleting the associated
nodes and edges. Finally, when the last Nc

c expires, as there
is no matching publication left, no notification is sent and
this NWR node is deleted. Note that this last NWR will
be aggregated at subsequent brokers to which the relevant
publications have been forwarded.

Suboptimal decision scenario: As presented earlier, ADOCK
dynamically decides based on an incomplete matching graph.
Using partial knowledge can lead to suboptimal choices. To
illustrate this case, assume that one broker has n different
NWRs registered as shown in Figure 4. At time T1, let
n� 1 publications arrive which match all these NWRs. At the
end of N1

1, ADOCK chooses to forward publications (rather
than aggregate) as the number of aggregation notifications
is n compared to n � 1 publications. In other words, this
broker decides to send n� 1 publication messages. After this
decision, assume that n � 2 publications arrive at T2 which
match the remaining n � 1 NWRs (since N1

1 has expired).
For the reason stated earlier, n � 2 publication messages are
sent at the end of N2

2. Let us assume that a similar scenario
occurs for all remaining NWRs. In summary, this broker sends
n � 1 messages when we have n NWRs, n � 2 for n � 1

7

NWRs and so on. The total number of messages sent is
(n � 1) + (n � 2) + . . . + 1 + 1, i.e., (n2 � n)/2 + 1. In
contrast, the optimal solution consist of sending n aggregated
messages. Therefore (n�1)(n�2)/2 additional messages are
sent compared to the optimal solution.

However, our experiment results (see Table I) show that
scenarios leading to incorrect decisions are rare and in prac-
tice, ADOCK performs close to the theoretical minimum. As
observed in Table I, decisions taken by ADOCK are less
accurate when the number of subscriptions is high, i.e., with
a large number of NWRs. In such situation, the probability
that a publication belongs to more than one NWR is high.
Because ADOCK individually decides for each NWR at the
time it expires, publications arriving later are not present.
This missing information impacts ADOCK’s ability to make
optimal decisions as shown in the above scenario.

TABLE I: Communication cost comparison (stock-sliding)

Subcriptions 90 180 270 360
Static vs ADOCK in % 3.53% 0.88% 4.29% 3.27%

B. Weighted Aggregation Decision (WAD) approach

The algorithm for making decisions based on the matching
graph is computationally expensive and its performance does
not scale with an increasing number of NWRs. We thus
propose an alternative algorithm, called Weighted Aggregation
Decision (WAD), which trades lower computation cost for
somewhat higher communication cost. This novel dynamic
solution makes aggregation decisions based on limited knowl-
edge that consists only of publications matching an NWR.

The core idea of WAD is to leverage the following ob-
servation: the aggregation decision for one NWR depends on
the number and degree of matching publications, where the
degree of a publication is the number of NWRs which match
the publication. If, for an NWR, the ratio of the number to the
degree of publications is high, the optimal decision tends to
be to aggregate.

The WAD algorithm functions by summing the weight of
publications for an NWR and comparing it to a threshold of 1.
A publication p is assigned the weight of weightp = 1/deg(p)
where deg(p) is the degree of p. This weight of a publication
is therefore inversely proportional to the number of NWRs
it is matching. For example, if a publication matches only
one NWR, the optimal decision is to aggregate for this
NWR, regardless of other publications. The overall algorithm
is presented in Algorithm 2. Note that similar to previous
approaches, the decision will be taken for each outgoing links
for an NWR separately.

Figure 3(c) presents the graphs generated from our previous
example. As shown in this figure, the weight of publication p1
is 1/3 as it is matching three NWRs. Similarly, the weights for
p2, p3 and p5 are 1/3, 1/2 and 1/2 respectively. When making
a decision for Na

a, the algorithm computes a total weight of 2/3
which is smaller that the trigger value of 1. Hence, publications
p1 and p2 are forwarded. The computed weight for both Nb

b
and Nc

c will be 1, which implies that p3 and p4 are aggregated.

Input: w: The window set of publications matching the
NWR

Output: aggregate: true if the NWR should be
aggregated

1 weight := 0

2 for p 2 w do
3 weight := weight + weightp
4 end
5 if weight � 1 then
6 aggregate := true
7 else
8 aggregate := false
9 end

Algorithm 2: WAD’s decision algorithm for an NWR

Fig. 5: Suboptimal decision scenario for WAD

Suboptimal decision scenario: The WAD algorithm employs a
weight-based heuristic which can lead to suboptimal decisions,
as shown in the following example. Assume that one broker
has n NWRs and n publications (see Figure 5) such that first
publication matches all NWRs except the last one. In this
situation, the weight of this publication is 1/(n� 1). The rest
of n�1 publications match all NWRs which implies a weight
of 1/n for each of them.

When processing the first n� 1 NWRs, the weight of the
first publication is 1/(n � 1). Since the sum of weights of
remaining n � 1 publications is (n � 1)/n, this leads to a
total of (n2 � (n � 1))/(n2 � n) which is greater than 1.
This causes the broker to aggregate and send n� 1 messages
for these NWRs. For the last NWR, the sum of publications
weights computed by the broker will be (n � 1)/n (smaller
than 1), and thus the broker decides to forward the matching
n� 1 publications. In total, we send 2(n� 1) messages from
WAD approach. For this matching graph the minimum vertex
cover set has n elements, therefore optimal solution sends only
n messages, that is n� 2 fewer messages.

VIII. EXPERIMENTAL EVALUATION

This section presents experimental evaluation conducted
for our proposed approaches. In particular, our experiments
explore the trade-off between the communication and compu-
tation cost. We use the total number of messages exchanged
among brokers as the metric for communication cost. We

8

measure the computation cost by summing the processing
time of two components across all brokers: the matching time
for each publication and the time to make an aggregation
decision for each NWR. We also compare our approach with a
solution presented in [16], referred to as “per-Broker Adaptive
aggregation Technique” (BAT).

A. Setup

We use two different datasets to evaluate our solutions. The
first dataset contains traces from real traffic monitoring data
extracted from the ONE-ITS service [14]. The publications
for this Traffic dataset are produced by 162 sensors located
at major highways in Toronto. These publications contain 12
distinct fields2. We also use a dataset from a stock market
application (fetched from daily stock data of Yahoo! Finance).
This Stock dataset is commonly used to evaluate pub/sub
systems [36]. In the experiments with this dataset, we use 62
stock symbols with each stock publication containing 8 distinct
fields. Note that the high-dimensional traffic workload exhibits
higher filtering cost than the Stock data. We also keep the
selectivity of subscriptions [37] to around 1% for the Traffic
dataset and 2% for the Stock dataset.

We implemented our approaches in Java using the PADRES
pub/sub system [18]. The broker overlay is deployed on a
cluster of 16 servers with Intel(R) Xeon(TM) 3.00 GHz CPUs.
Each broker runs in a JVM on a separate machine with a min-
imum of 256 MB to a maximum of 2 GB memory allocation.
In this setup, 4 brokers are arranged as a chain of core brokers
where each core broker has 3 edge brokers attached. Among
the 12 edge brokers, 3 brokers have publishers, 3 brokers
have subscribers, and the remaining 6 brokers have a mix of
subscribers and publishers attached.

We vary two parameters in our experiments: the publication
rate ranges from 14 to 1080 publications per second for the
Traffic dataset and from 465 to 2790 publications per second
for the Stock dataset. The number of subscriptions varies
from 9 to 450 for both datasets. Our subscription workload
consists of a mix of aggregate and regular subscriptions at
a ratio of 1:2. Our experiments include subscriptions for both
tumbling and sliding window semantics. For tumbling window
subscriptions in either dataset, we choose a duration of 10
seconds for both window and shift size (� = ! = 10 seconds).
For sliding window subscriptions, the window size is also 10
seconds, but the shift size is only 5 seconds (! = 10 seconds,
� = 5 seconds). Each experiment runs for 1000 seconds,
which represents a maximum of 100 NWRs for both settings.
This allows us to observe the effect of using sliding windows
without varying the number of NWRs.

B. Communication cost

In this section, we explore the impact of the publication
rate and the number of subscriptions on the communication
cost.

1) Publication rate: Figures 6 and 7 compare the com-
munication and computation costs for the ADOCK, WAD
and BAT aggregation techniques at different publication rates.
Figures 6(a) and 6(b) show the communication cost for the

2http://msrg.org/datasets/traffic

Traffic dataset with tumbling and sliding windows, respec-
tively, while Figures 6(c) and 6(d) show results for the Stock
data.

In general, we can observe that ADOCK is the most
efficient solution in terms of number of notifications across
all experiments, and that the BAT baseline performs the worst
across the board. Note that ADOCK performs close to the
optimal static baseline (as shown in Table I, the maximum
difference is only 4.29 % in the experiment). WAD performs
similarly to ADOCK on the Traffic dataset but is noticeably
less efficient on the Stock dataset. This is due to subscriptions
in the Traffic dataset using a relatively larger number of
fields, resulting in a reduced selectivity of publications (1%)
compared to those of the Stock dataset (2%). By rendering
publications less selective, the interconnectivity of NWRs
decreases as well. As discussed in Section VII-B, WAD makes
better decisions when NWRs have a smaller overlap, which
allows WAD to perform close to ADOCK for the Traffic
experiments. For instance, at 1080 pub/s WAD has only 2.7%
more communication overhead than ADOCK (Figure 6(a)).
In contrast, for the Stock dataset (Figure 6(c)), the increase
in NWR interconnectivity when raising the publication rate
negatively impacts the performance of WAD. However, the
margin of error by WAD decreases as publication rates in-
crease. For instance, at 2790 pub/s, WAD sends only 22%
more publication than ADOCK compared to 50% at 465 pub/s.
This happens when the average degree of NWRs is sufficiently
large. Due to a high publication rate, WAD tends to always
decide to aggregate NWRs rather than forward publications,
which is in line with the decisions ADOCK makes at that
publication rate. Such reduction is also present in the Traffic
experiments where the overhead shrinks from 7% at 162 pub/s
to 2.7% at 1080 pub/s (Figure 6(a)).

In the sliding window experiments for both datasets
(see Figures 6(b) and 6(d)), all techniques produce a similar
number of messages compared to their tumbling window
equivalents (see Figures 6(a) and 6(c)). For example, the
difference between total messages sent by ADOCK in the
sliding and tumbling settings is at most 4.6% at 465 pub/s
rate and at least 1.8% at 2790 pub/s (Figure 6(d)). Since we
fixed the number of NWRs to be equal in both settings, the
difference in communication cost is accounted by the increased
interconnectivity of NWRs in the sliding window experiments.
However, the increased overhead due to interconnectivity is
offset by smaller gaps in time between consecutive NWR
decisions which translates in a small overall impact on the
communication load.

2) Subscription rate: Figure 8(a) shows the communi-
cation cost when varying the number of subscriptions. We
can observe that the cost of communication increases for all
techniques according to the number of subscriptions registered.
This is because more messages are required to serve additional
subscriptions. As expected, we find that ADOCK has the
lowest communication cost while WAD generates slightly
more messages, due to the suboptimal decisions it takes.
However, the relative difference between the total number of
messages sent by WAD compared to that of ADOCK shrinks as
the number of subscriptions increases. For example, at 90 sub-
scriptions, WAD has 28.67% additional overhead whereas for
360 subscriptions it costs only 12.7% more (see Figure 8(a)).

9

.
0

100k

200k

300k

400k

500k

600k

700k

800k

 0 200 400 600 800 1000 1200

#M
es

sa
ge

s
fo

r a
gg

re
ga

tio
n

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(a) Comm. cost (traffic-tumbling)

0

100k

200k

300k

400k

500k

600k

700k

800k

 0 200 400 600 800 1000 1200

#M
es

sa
ge

s
fo

r a
gg

re
ga

tio
n

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(b) Comm. cost (traffic-sliding)

10k

20k

30k

40k

50k

60k

70k

80k

 0 500 1000 1500 2000 2500 3000

#M
es

sa
ge

s
fo

r a
gg

re
ga

tio
n

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(c) Comm. cost (stock-tumbling)

10k

20k

30k

40k

50k

60k

70k

80k

 0 500 1000 1500 2000 2500 3000

#M
es

sa
ge

s
fo

r a
gg

re
ga

tio
n

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(d) Comm. cost (stock-sliding)

Fig. 6: Communication cost with variable rate of publications

.
 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(a) Comp. cost (traffic-tumbling)

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(b) Comp. cost (traffic-sliding)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(c) Comp. cost (stock-tumbling)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Average publication rate (pubs./sec.)

ADOCK
WAD
BAT

(d) Comp. cost (stock-sliding)

Fig. 7: Computation cost with variable rate of publications

With a large number of NWRs, the decisions taken by brokers
using WAD are less prone to error.

C. Computation cost

This section presents a study of computation overhead
while varying the publication rate and number of subscriptions.

1) Publication rate: The graphs in Figure 7 show the total
computation time when varying the publication rate for our
different workloads. Figure 7(a) shows the total computation
cost for the Traffic experiments using tumbling windows.
As expected, ADOCK exhibits a higher computation cost
compared to WAD. Surprisingly, BAT has a computation cost
similar to ADOCK which is due to the processing required to
handle the extra communication (see Figure 6(a)).

As stated earlier, in the sliding window setting, the size
of the decision graph increases as NWRs are more likely
to be interconnected. We observe in Figure 7(b) that the
computation cost for ADOCK reaches almost 1200s for the
sliding setting while it is only 500s for the tumbling setting.
This difference is explained by the computation cost required
to process bigger decision graphs. In contrast, we observe that
WAD and BAT have a similar computation cost for tumbling
and sliding settings. BAT is based on a heuristic with a cost
independent of the size of the decision graph. For WAD, the
cost of the decision effectively increases: However, it accounts
for a negligible part of the overall cost which consists mainly
of matching. Therefore, the increase in computation cost is not
visible as shown in Figure 7(b).

For the Stock dataset, WAD and BAT also have a similar
computation cost for both tumbling and sliding settings (see
Figures 7(c) and 7(d)). For the tumbling setting (Figure 7(c)),
BAT performs better than ADOCK which differs from the

observation made in the Traffic dataset. The explanation lies in
the difference in matching cost. For this setting, BAT is sending
at most 20K more messages than ADOCK (Figure 6(a)),
which results in a moderate increase in matching cost. In
contrast, for the Traffic dataset, BAT sends nearly 600K more
messages than ADOCK, which causes the matching cost to
equal ADOCK’s decision cost.

2) Subscription rate: We observe in Figure 8(c) that the
computation time of ADOCK grows faster than a linear
function when the number of NWRs increases. In contrast,
the computation cost for WAD varies linearly relative to
the number of NWRs. We can explain this observation by
comparing the running time complexity of both approaches.
From Section VI-C, we know that the complexity of ADOCK
is O(

p
|N |+ |P |⇥degA(N)⇥ |N |) per decision where N , P

and degA(N) denote the set of NWRs, set of publications,
and the average number of publications per NWR, respec-
tively. Therefore, the total computation cost for all NWRs is
O(

p
|N |+ |P | ⇥ degA(N) ⇥ |N |2). Whereas for WAD, the

total computation cost for all NWRs is O(degA(N)⇥ |N |).
Figure 8(d) shows that ADOCK’s computation cost is

greater than WAD’s, but the gradient gradually decreases for
larger number of subscriptions. This is because the number of
NWRs does not necessarily increase linearly to the number
of subscriptions: an NWR is created only if there is at least
one matching publication. This phenomenon is slightly more
visible with tumbling window subscriptions than with sliding
window ones (see Figure 8(b)).

We can also observe that the WAD approach incurs a com-
putation cost similar to that of BAT but with a more effective
traffic reduction gain. As shown in Figures 8(b) and 8(d), we
also notice that the higher interconnectivity of NWRs in the
Stock dataset causes the difference in the computation cost

10

.
0

50k

100k

150k

200k

250k

300k

350k

 0 50 100 150 200 250 300 350 400

#M
es

sa
ge

s
fo

r a
gg

re
ga

tio
n

Number of subscriptions

ADOCK
WAD
BAT

(a) Comm. cost (stock-tumbling)

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 50 100 150 200 250 300 350 400To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Number of subscriptions

ADOCK
WAD
BAT

(b) Comp. cost (stock-tumbling)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Number of subscriptions

ADOCK
WAD
BAT

(c) Comp. cost (traffic-tumbling)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 50 100 150 200 250 300 350 400To
ta

l c
om

pu
ta

tio
n

ov
er

he
ad

 (s
)

Number of subscriptions

ADOCK
WAD
BAT

(d) Comp. cost (stock-sliding)

Fig. 8: Dependency of communication and computation cost on the number of subscriptions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

R
at

io

ω to δ ratio

CPU overhead (ADOCK-WAD)/WAD
Message overhead (WAD-ADOCK)/ADOCK

Fig. 9: Impact of sliding windows

between WAD and BAT to be more significant compared to
the Traffic experiments.

D. Impact of sliding windows

To highlight the impact of sliding windows, we conduct
a sensitivity analysis by varying the window size(!) to shift
size (�) ratio. Figure 9 compares the relative performance of
ADOCK and WAD for both communication and computation
loads.

When the ratio increases, we observe that the difference
between WAD and ADOCK also increases in terms of com-
munication and computation cost. For example, at a ratio of
1.5, ADOCK requires about 41% more time than WAD to
make a decision while WAD generates 4% more messages
than ADOCK. At a ratio of 6, ADOCK requires around
300% additional computation time while reducing 27% in the
communication overhead.

As we raise the ratio, the NWR interconnectivity increases
and makes the decision graph bigger. Taking a decision based
on a larger graph requires more computation cost which is
disadvantageous for ADOCK. On the other hand, since WAD
uses partial information about the graph, a decision on a larger
graph becomes less accurate.

In light of our observations, WAD presents an interesting
compromise as it trades a 25% higher communication cost for
a 3 times lower computation time over ADOCK. We conclude
that WAD is a better solution for workloads containing sub-
scriptions with a high sliding ratio.

E. Summary

From our experimental results we conclude that, when
varying the publication rate, the communication cost for
ADOCK is up to 50% lower than that for WAD but at the
expense of a computation overhead up to four times greater.
However, as the publication rate increases, the relative differ-
ence in the communication cost between these two approaches
decreases in some configurations. On the other hand, the
computation cost difference increases for higher publication
rates.

When varying the number of subscriptions, the communi-
cation cost for WAD is up to 29% higher than that for ADOCK.
On the other hand, the computation cost of ADOCK is up to
2.1 times the computation cost of WAD. This shows that a
trade-off exists between the computation and communication
cost: While ADOCK performs slightly better in terms of the
communication cost, this is offset by WAD showing a clear
advantage in terms of the computation cost.

From the results in our setup we also conclude that for
the Stock dataset, ADOCK is a better candidate as it has
a lower communication cost than WAD provided that the
application can afford a higher computation cost. On the
other hand, WAD is more suitable for the Traffic dataset as
it yields a significantly lower computation cost yet a similar
communication cost compared to ADOCK.

As mentioned in Section VIII-B, the interconnectivity
among the NWRs is the major source of the trade-off between
communication and computation cost and hence between WAD
and ADOCK. If the subscriptions have sliding windows or high
selectivity, a high interconnectivity is expected. Overlapping
among subscriptions [38] is also a prominent factor that in-
creases interconnectivity. From the experiments with Stock and
Traffic datasets we observe that, if the system expects a mod-
erate amount of subscriptions with high selectivity, ADOCK
is a better candidate. Otherwise, WAD is recommended.

IX. CONCLUSIONS

In this paper, we study the problem of minimizing the
number of notifications for aggregation in pub/sub systems,
which we refer to as Minimum-Notifications-for-Aggregation.
Our theoretical study reveals that it is possible to achieve
minimal communication cost under the unrealistic assump-
tion of complete knowledge of future publications. We also
demonstrate that applying this solution (ADOCK) at runtime
leads to suboptimal, yet still efficient, results. We devise an

11

alternative solution, named WAD, which is computationally
cheaper. We evaluate our proposed approaches using two real
datasets extracted from our traffic monitoring and stock market
application scenarios. Our experimental results highlight the
existence of a trade-off between computation and communica-
tion cost: ADOCK exhibits a communication cost lower than
WAD but at the expense of a computation cost increase.

REFERENCES

[1] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts, “Linear road: a stream data
management benchmark.” VLDB Endowment, 2004.

[2] S. F. Abelsen, H. Gjermundrd, D. E. Bakken, and C. H. Hauser, “Adap-
tive data stream mechanism for control and monitoring applications,”
in Computation World, 2009.

[3] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3,
2005.

[4] P. Jesus, C. Baquero, and P. S. Almeida, “A survey of distributed data
aggregation algorithms,” University of Minho, Tech. Rep., 2011.

[5] G. Li et al., “A distributed service-oriented architecture for business
process execution,” ACM Trans. Web, 2010.

[6] M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Hull, and R. Vaculı́n,
“Safe distribution and parallel execution of data-centric workflows over
the publish/subscribe abstraction,” IEEE Trans. Knowledge and Data
Engineering, 2015.

[7] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky, “Hierarchical
clustering of message flows in a multicast data dissemination system,”
in Proc. of PDCS, 2005.

[8] V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta, and
S. Gimåker, “The hidden pub/sub of Spotify (industry article),” in Proc.
of DEBS, 2013.

[9] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White,
“Towards expressive publish/subscribe systems,” in Proc. of EDBT,
2006.

[10] J. Sventek and A. Koliousis, “Unification of publish/subscribe systems
and stream databases: the impact on complex event processing,” in Proc.
of Middleware, 2012.

[11] B. Chandramouli and J. Yang, “End-to-end support for joins in large-
scale publish/subscribe systems,” Proc. VLDB Endow., vol. 1, no. 1,
2008.

[12] R. van Renesse and A. Bozdog, “Willow: DHT, aggregation, and
publish/subscribe in one protocol,” in Proc. of IPTPS, 2004.

[13] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-
A. Jacobsen, and S. Mankovskii, “Solving big data challenges for
enterprise application performance management,” Proc. VLDB Endow.,
2012.

[14] “ONE-ITS Online Network-Enabled Intelligent Transportation Sys-
tems.” [Online]. Available: http://one-its-webapp1.transport.utoronto.ca

[15] D. Qiu, K. Zhang, and H.-A. Jacobsen, “Smart Phone Application for
Connected Vehicles and Smart Transportation,” in Middleware Posters,
2013.

[16] N. K. Pandey, K. Zhang, S. Weiss, H.-A. Jacobsen, and R. Vitenberg,
“Distributed event aggregation for content-based publish/subscribe sys-
tems,” in ACM DEBS, 2014.

[17] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation
of a wide-area event notification service,” ACM Tran. on Computer
Systems, vol. 19, no. 3, 2001.

[18] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovskii, “The PADRES
distributed publish/subscribe system,” in Proc. of ICFI, 2005.

[19] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and
scalable technology for distributed system monitoring, management,
and data mining,” ACM Trans. Comput. Syst., vol. 21, no. 2, 2003.

[20] P. Yalagandula and M. Dahlin, “Shruti: A Self-Tuning Hierarchical
Aggregation System,” in Proc. of SASO. IEEE Computer Society,
2007.

[21] T. Repantis and V. Kalogeraki, “Hot-spot prediction and alleviation in
distributed stream processing applications,” in Proc. of DSN, 2008.

[22] H. Shen, “Content-based publish/subscribe systems,” in Handbook of
P2P Networking. Springer, 2010.

[23] R. Baldoni, L. Querzoni, S. Tarkoma, and A. Virgillito, “Distributed
event routing in publish/subscribe systems,” in MNEMA. Springer,
2009.

[24] M. Wood and K. Marzullo, “The design and implementation of Meta,”
in Reliable Distributed Computing with the ISIS Toolkit, 1994.

[25] L. Golab, K. G. Bijay, and M. T. Özsu, “Multi-query optimization of
sliding window aggregates by schedule synchronization,” in Proc. of
CIKM, 2006.

[26] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and Y. Zhang,
“STAR: Self-tuning aggregation for scalable monitoring,” in VLDB,
2007.

[27] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” in Proc. of SIGMOD, 2006.

[28] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica, “Sharing
aggregate computation for distributed queries,” in Proc. of SIGMOD,
2007.

[29] L. Brenna, J. Gehrke, M. Hong, and D. Johansen, “Distributed event
stream processing with non-deterministic finite automata,” in Proc. of
DEBS, 2009.

[30] A. Cheung and H.-A. Jacobsen, “Publisher placement algorithms in
content-based publish/subscribe,” in Proc. of ICDCS, 2010.

[31] A. K. Y. Cheung and H.-A. Jacobsen, “Green resource allocation
algorithms for publish/subscribe systems,” in Proc. of ICDCS, 2011.

[32] J. Chen, L. Ramaswamy, and D. Lowenthal, “Towards efficient event
aggregation in a decentralized publish-subscribe system,” in ACM
DEBS, 2009.

[33] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matchings
in bipartite graphs,” SIAM Journal on Computing, vol. 2, no. 4, 1973.

[34] D. König, “Graphs and matrices,” in Mat Fiz Lapok 38 (in Hungarian),
1931.

[35] M. Soltys and A. Fernandez, “A linear-time algorithm for computing
minimum vertex covers from maximum matchings,” McMaster Univer-
sity, Hamilton, Canada, Tech. Rep., 2012.

[36] A. K. Y. Cheung and H.-A. Jacobsen, “Publisher placement algorithms
in content-based publish/subscribe,” Proc. of ICDCS, 2010.

[37] K. R. Jayaram, C. Jayalath, and P. Eugster, “Parametric subscriptions
for content-based publish/subscribe networks,” in Middleware, 2010.

[38] Z. Liu, S. Parthasarthy, A. Ranganathan, and H. Yang, “Scalable event
matching for overlapping subscriptions in pub/sub systems,” in Proc. of

DEBS, 2007.

12

